ТТЛ-ВХОДЫ И ТТЛ-ВЫХОДЫ
Цифровые микросхемы выполняют преобразование сигналов, изменяющихся дискретно. Такой сигнал может принимать несколько фиксированных значений. Современные микросхемы, как правило, работают с сигналами, которые имеют два значения, и эти значения кодируются двумя различными уровнями напряжения. Обычно эти уровни напряжения расположены в диапазоне от нуля до напряжения источника питания и различны для серий микросхем, отличающихся по технологии изготовления. Широкое распространение в настоящее время получили микросхемы, изготовленные по ТТЛ-технологии, и поэтому часто микросхемы, изготовленные по другим технологиям, имеют выводы с такими же характеристиками и работают с такими же уровнями напряжения (в частности, все микросхемы, применяющиеся в ПМ-ЭВМ). Для того чтобы подавать сигналы с микросхем, имеющих одни уровни напряжения, на микросхемы с другими уровнями напряжения, применяются специальные преобразователи уровня.
Вывод микросхемы, на который сигнал необходимо подавать, называется входом (для ТТЛ-микросхем - ТТЛ-входом), а вывод, на котором сигнал вырабатывается самой микросхемой, называется выходом (для ТТЛ-микросхем - ТТЛ-выходом). В этом параграфе будут подробно рассмотрены характеристики ТТЛ-входов и ТТЛ-выходов.
Входные и выходные уровни напряжения ТТЛ-микросхем имеют определенные значения. Высокий уровень напряжения должен лежать в пределах от +2,4 до +5 В для ТТЛ-выхода и в пределах от +2 до +5 В для ТТЛ-входа, а низкий уровень -от 0 до +0,4 В для ТТЛ-выхода и от 0 до +0,8 В для ТТЛ-входа. Между нижней границей для более высокого уровня и верхней границей для более низкого уровня напряжения ТТЛ-входа имеется диапазон напряжения (от 0,8 до 2 В) шириной 1,2 В. Этот диапазон предназначен для защиты микросхемы от ложных срабатываний при помехах амплитудой менее 1,2 В. Если бы его не было, то любая малая помеха приводила бы к тому, что напряжение сигнала попадало бы из области низких напряжений в область высоких (или наоборот).
В этом диапазоне напряжение сигнала может находиться только в момент переключения с одного уровня напряжений на другой.
Как известно, переменные в логике могут принимать два значения - 0 и 1. Возможны два способа кодировки этих значений. Первый способ - это кодировать 0 низким уровнем напряжения, а 1 - высоким уровнем напряжения. Такой способ кодировки называется позитивной (иногда положительной) логикой. Второй способ - кодировать 0 высоким уровнем, а 1 - низким уровнем напряжения. Такой способ кодировки называется негативной (иногда отрицательной) логикой. Эти названия общеприняты, хотя не совсем удачны. Во-первых логика здесь ни при чем (она одинаковая, разные только способы кодировки), а во-вторых, слова "позитивный" и "негативный" применяются для обозначения способов кодировки с помощью разных уровней напряжения одной полярности. В дальнейшем для краткости вместо слов "сигнал имеющий высокий (низкий) уровень напряжения" будут употребляться слова "сигнал высокого (низкого) уровня" или просто высокий (низкий) уровень", и так как в этой книге принята положительная логика, то будут также употребляться слова "уровень логического нуля (единицы)".
Рис. 5.3. Характеристика ТТЛ-входа
ТТЛ-вход является эмиттером многоэмиттерного транзистора (рис. 5.2). Диод к эмиттеру подключен для того, чтобы ограничивать отрицательные импульсы напряжения. Если поставить эксперимент, изображенный на рис. 5.2, то можно получить входную характеристику ТТЛ-входа, т. е. зависимость тока от подаваемого напряжения (рис. 5.3). Ветви 1 соответствует ток, вытекающий в ТТЛ-вход, который в этом случае работает как р-п переход, включенный в обратном направлении, и поэтому значение тока невелико. Этот ток обозначается обычно I1вх. Ветви 2 соответствует ток, который вытекает из ТТЛ-входа, работающего как р-п переход, включенный в прямом направлении.
В этом случае ток ограничивается сопротивлением R. Этот ток обозначается I0вх. В диапазоне напряжений, соответствующем высокому уровню, I1вх
должен быть не больше 0,1 мА, а в диапазоне, соответствующем низкому уровню, I0вх должен быть не больше 1,6 мА. Направления I0вх и I1вх показаны стрелками на рис. 5.2. Вход с такими характеристиками называется стандартным ТТЛ-входом или стандартной ТТЛ-нагрузкой.
Рис. 5.4. ТТЛ-выход
Рис. 5.5. Схема снятия характеристики ТТЛ-выхода при высоком уровне напряжения (а); характеристика (б)
ТТЛ-выходы бывают трех типов: нормальный ТТЛ-выход, выход с открытым коллектором и выход с тремя состояниями. Схема нормального ТТЛ-выхода приведена на рис. 5.4. Для того чтобы создать на выходе высокий уровень напряжения, с помощью внутренних управляющих цепей открывается верхний транзистор и закрывается нижний. Если поставить эксперимент по схеме, изображенной на рис. 5.5,л, то можно снять выходную характеристику ТТЛ-выхода при высоком уровне напряжения (рис. 5.5,6). Из этой характеристики видно, что с возрастанием вытекающего тока I1вых напряжение на выходе уменьшается. Стандартный ТТЛ-выход должен обеспечивать при I1вых, равном 1 мА, высокий уровень напряжения (не меньше+2,4 В).
Рис. 5.6. Схема снятия характеристики ТТЛ-выхода при низком уровне напряжения (а); характеристика (б)
Для того чтобы создать на выходе напряжения низкого уровня, с помощью внутренних управляющих цепей открывается нижний транзистор и закрывается верхний. Схема, с помощью которой можно снять выходную характеристику ТТЛ-выхода, и сама характеристика приведены на рис. 5.6. Из этой характеристики видно, что с возрастанием втекающего тока напряжение на ТТЛ-выходе, находящемся в состоянии низкого напряжения, увеличивается. Стандартный ТТЛ-выход должен обеспечивать при I0вых, Равном 16 мА, высокий уровень напряжения (не более 0,4 В). Если теперь сравнить входные и выходные токи, то видно, что к одному стандартному ТТЛ-выходу можно подключить, не перегружая его, 10 стандартных ТТЛ-входов.
Иногда используют термин "нагрузочная способность" выхода или "коэффициент разветвления по выходу", измеряющийся числом входов, которые можно подключить к данному выходу.
Диод между эмиттером верхнего транзистора и коллектором нижнего транзистора включен для того, чтобы избежать открывания верхнего транзистора при низком уровне напряжения на выходе. При переключении выходных транзисторов в какой-то момент времени они оба оказываются открытыми и ток через них резко возрастает (в этот момент ток ограничивается только резистором К). Резкое возрастание тока может создать импульс помехи, распространяющейся по цепям питания. Для подавления таких помех используются развязывающие конденсаторы, которые включаются между линией питания и общим выводом в непосредственной близости от микросхемы. Развязывающий конденсатор должен быть один на группу не более 10 микросхем и должен иметь емкость не менее 0,002 мкФ на микросхему.
Два нормальных ТТЛ-выхода нельзя подключать друг к другу, если возможна ситуация, когда на одном выходе высокий, а на другом — низкий уровень напряжения, потому что тогда ток, протекающий через открытые транзисторы разных ТТЛ-выходов, может превысить допустимое значение.
Рис. 5.7. Выход с открытым коллектором
Рис. 5.8. Соединение нескольких выходов с открытым коллектором
Второй тип ТТЛ-выхода — это так называемый выход с открытым коллектором. Как следует из названия, выход такого типа представляет собой коллектор транзистора (рис. 5.7). Для того чтобы обеспечить нормальную работу этого выхода, его необходимо соединить через резистор с положительным полюсом источника питания. Тогда если транзистор закрывается с помощью внутренних управляющих цепей, то напряжение на выходе больше +2,4 В, что достаточно для создания стандартного высокого ТТЛ-уровня; если же транзистор открывается, то напряжение на выходе падает до стандартного низкого ТТЛ-уровня. При закрытом выходном транзисторе ток I1вых течет от положительного полюса источника питания через резистор R, при открытом транзисторе ток I0вых течет через транзистор.
Резистор R рассчитывается так, чтобы обеспечить необходимые значения токов I0вых и I1вых.
В отличие от стандартных ТТЛ-выходов выходы с открытым коллектором можно соединять друг с другом (рис. 5.8). В этом случае высокий уровень напряжения поддерживается в точке соединения только тогда, когда закрыты транзисторы всех выходов, поэтому в этой точке реализуются логическая функция И при позитивной логике и логическая функция ИЛИ при негативной логике. Такая схема часто называется "монтажное И" или "монтажное ИЛИ" в зависимости от используемой логики.
Третий тип ТТЛ-выходов - это выходы с тремя состояниями или, как их еще называют, выходы с третьим состоянием высокого сопротивления (или просто выходы с третьим состоянием). В отличие от нормальных ТТЛ-выходов оба выходных транзистора такого выхода с помощью внутренних управляющих цепей могут быть закрыты. В этом случае через них может протекать лишь небольшой ток утечки (обычно несколько микроампер) и говорят, что выходы находятся в отключенном состоянии или в состоянии высокого сопротивления. Для перевода выходов микросхемы в состояние высокого сопротивления, как правило, имеется специальный управляющий вход, или если этот переход происходит вследствие каких-либо неуправляемых внутренних процессов, то имеется специальный выход, состояние которого показывает, переведены ли в состояние высокого сопротивления другие выходы. Выходы с третьим состоянием сконструированы специально для того, чтобы можно было подключать несколько выходов для управления состоянием одной линии. Когда несколько выходов с третьим состоянием подключены к одной линии, то в определенный момент времени только один из них может управлять состоянием этой линии (т. е. создавать на ней уровень высокого или низкого напряжения). Остальные выходы должны находиться в состоянии высокого сопротивления. В этом состоянии они не создают дополнительную нагрузку на транзисторы работающего выхода.
Естественно, что это требует спе циальных электронных схем, которые управляют тем выходом, который должен работать в какой-либо определенный момент времени.
Вывод микросхемы может быть входом или выходом и, кроме того, может совмещать эти функции. Это достигается путем объединения внутри микросхемы входов и выходов с тремя состояниями или открытым коллектором. Для управления таким выводом у микросхемы имеется специальный вход, в зависимости от сигнала на котором вывод работает как ТТЛ-вход или как ТТЛ-выход в разные моменты времени. Ниже будут встречаться микросхемы со всеми разобранными типами выводов. Нормальные ТТЛ-входы и ТТЛ-выходы в дальнейшем будем называть просто входами и выходами, а во всех остальных случаях будем указывать определенный тип вывода.
5.3. ВРЕМЕННЫЕ ДИАГРАММЫ
Электрические сигналы, которые соответствуют определенным логическим состояниям, можно наблюдать на выводах работающих микросхем с помощью осциллографа или логического пробника. На рис. 5.9,а показано изображение на экране осциллографа электрического сигнала с вывода цифровой микросхемы. Ось времени располагается горизонтально, а ось напряжений — вертикально. Время увеличивается слева направо, т. е. из двух событий правее окажется более позднее. Такое расположение и направление оси времени традиционны и используются во всех осциллографах.
Рис. 5.9. Дискретный сигнал:
а - на экране осциллографа; б - условное графическое изоб -ражение
Электрические сигналы с выводов цифровых микросхем принято изображать в процессе их изменений во времени (рис. 5.9,6). Такие условные графические изображения называются временными диаграммами. На временных диаграммах не наносятся оси напряжения и времени. Нулевая отметка времени также не наносится, так как большинство процессов периодически повторяется и достаточно изобразить интервал времени немного большим периода повторения, чтобы диаграмма содержала всю необходимую информацию о происходящем процессе.
Приведем некоторые соглашения, которые используются при изображении сигналов на временньгх диаграммах. Высокий уровень изображается, как показано на рис. 5.10,я, состояние высокого сопротивления - как на рис. 5.10,в, низкий уровень -как на рис. 5.10,6. Штриховые линии на этих рисунках приведены только для сравнения и обычно не наносятся. На рис. 5.11 показано, как изображается переход с одного уровня на другой. Переход от низкого уровня к высокому называется фронтом, а от высокого к низкому — срезом. Иногда употребляют также термины "нарастающий и спадающий фронт", "передний и задний фронт", "положительный и отрицательный фронт" и некоторые другие. Если переход от одного уровня к другому происходит не в конкретный момент времени, а может произойти в любой момент времени в течение некоторого интервала времени, то это изображается как на рис. 5.12.
Рис. 5.10. Изображение уровней напряжения:
а — высокий; б — низкий; в — состояние высокого сопротивления
Рис. 5.11. Изображение фронтов:
а - фронт; б - срез
Рис. 5.12. Изображение фронтов в неопределенный момент времени
Рис. 5.13. Изображение зависимости одного сигнала от другого
Изменение одного сигнала может быть причиной изменения другого сигнала. Если изменение вызывается фронтом сигнала, то это изображается как на рис. 5.13,я, если уровнем сигнала -то как на рис. 5.13,6. При этом кружок отмечает тот элемент сигнала, который вызывает изменение, а стрелка указывает на изменение зависимого сигнала. Изменение одного сигнала может быть причиной изменений нескольких сигналов, тогда это изображается, как показано на рис. 5.14, и наоборот, изменение некоторого сигнала может вызываться только определенными изменениями нескольких других сигналов (рис. 5.15).
Рис. 5.14. Изображение зависимости нескольких сигналов от одного
Рис. 5.15. Изображение зависимости одного сигнала от нескольких других
Рис. 5.16. Изображение неопределенного сигнала
Если уровень на входе микросхемы не влияет никак на ее работу или уровень на выходе не определен (не устанавливается), то это изображается так, как показано на рис. 5.16. Если необходимо изобразить на временной диаграмме состояния и Фронты нескольких сигналов, которые ведут себя одинаково с точки зрения переключений, но могут иметь разные уровни, то это делается так, как показано на рис. 5.17. Длительности интервалов времени между какими-либо изменениями сигналов изображаются с помощью букв или цифр на выносных линиях (рис. 5.18). На этом же рисунке показано, где пишутся буквенные обозначения сигналов (слева рядом с соответствующей временной диаграммой).
Рис. 5.18. Изображение временных интервалов
Рис. 5.17. Изображение нескольких сигналов, ведущих себя идентично с точки зрения переходов с уровня на уровень
5.4. МИКРОСХЕМЫ, РЕАЛИЗУЮЩИЕ ЛОГИЧЕСКИЕ ФУНКЦИИ
В этом и следующем параграфах будут описаны микросхемы, используемые в ПМ-ЭВМ. Как правило, инженеров, имеющих дело с микросхемами, не интересует их внутреннее устройство, их интересуют только выполняемые ими функции и характеристики входов и выходов. Функции микросхем будут описываться с помощью таблиц, в которых будут указываться входные и выходные комбинации сигналов низкого и высокого уровней. Сигнал низкого уровня будет обозначаться буквой L, высокого — буквой Н, фронт — стрелкой t, срез — стрелкой 4. Если сигнал никак не влияет на работу микросхемы в каком-либо режиме, он будет обозначаться символом X. Для описания работы микросхем будут также применяться таблицы истинности и временные диаграммы. Для каждой микросхемы будет приводиться ее условное графическое изображение. Номера выводов, на которые подается напряжение питания, и номера общих выводов перечислены в приложении 3.
Puc. 5.19. Микросхема К5 89АП16
Рис. 5.20. МикросхемаК589АП16 как двунаправленный буфер
Микросхема К589АП16 (рис. 5.19). Эта микросхема содер жит четыре элемента, каждый из которых предназначен для организации одной линии двунаправленной шины передачи данных и называется шинным формирователем. Все четыре элемента имеют общие управляющие входы CS и S. Каждый элемент имеет вход А, выход С с тремя состояниями и вывод В, который работает как вход или как выход с тремя состояниями. Когда на управляющем входе CS высокий уровень, выходы С и В находятся в отключенном состоянии (табл5.1).
Если на входе CS низкий уровень, то сигналом на входе S можно управлять направлением передачи. При низком уровне на входе S сигнал передается от входа А на выход В, т. е. уровень сигнала на выходе такЬй же, как и на входе. Выход С при этом находится в отключенном состоянии. При высоком уровне на входе S сигнал передается от входа В к выходу С, а выход В находится в отключенном состоянии. Таким образом, вывод В может работать и как вход для выхода С, и как выход для входа А, и его можно использовать для организации одной линии двунаправленной шины для передачи данных. Выводы А и С можно соединять друг с другом (рис. 5.20), тогда эти выводы можно также использовать как одну двунаправленную линию, направлением передачи по которой, управляет вход S.
Таблица5.1