Простейшая микро-ЭВМ

          

СТРУКТУРА ПАМЯТИ


Блок памяти состоит, как пра­вило, из ОЗУ и ПЗУ. В ОЗУ и ПЗУ хранятся данные и програм­мы пользователя. В ПЗУ помешаются те данные и программы, которые должны сохраняться при выключении питания. Во-первых, в ячейки ОЗУ информация может попадать, в результате работы какой-либо программы, во-вторых, пользователь может сам изменить их содержание при помощи клавиатуры.

Максимальное количество ячеек памяти (или "объем памя­ти"), к которым может обращаться при помощи своей 16-раз­рядной шины адреса микропроцессор КР580ИК80А, равно 216, или 65 536. Обычно говорят: не 65 536 ячеек, а 64 К (1 К равня­ется 1024). Для решения некоторых задач оказывается мало и такого объема памяти, но для большинства применений доста­точно использовать лишь его часть. С другой стороны, объем памяти, содержащейся в одной микросхеме, может быть мень­ше, чем максимальный объем, который может адресовать мик­ропроцессор. Эти два обстоятельства, а также и то, что в составе памяти микро-ЭВМ необходимо иметь память с разными свой­ствами (ОЗУ и ПЗУ), приводят к специальным техническим ре­шениям при конструировании памяти микро-ЭВМ.

Рассмотрим эти технические решения на примере блока па­мяти ПМ-ЭВМ. Блок памяти, состоящий из двух микросхем ОЗУ и двух ПЗУ, подключается к шинам данных, адреса и управления (рис. 7.1). В качестве ОЗУ в ПМ-ЭВМ использу­ются микросхемы статической памяти КР541РУ2 (см. гл. 4) с организацией 1024x4 бита. Поэтому для получения объема памяти 1 Кбайт (1024 байта) необходимо подключить две микросхемы, присоединив выводы данных одной микросхемы (D12) к линиям DBO-DB3 шины данных, а выводы другой (D13) — к линиям DB4 — DB7. Остальные выводы микросхем D12 и D13 подключаются к одним и тем же линиям. Таким образом составляется блок ОЗУ емкостью 1 Кбайт.

В качестве ПЗУ в ПМ-ЭВМ используются две микросхемы КР556РТ4 (D14, D15) с организацией 256x4 бит. Они включе­ны аналогично микросхемам ОЗУ, т. е. организованы в блок 25 6 байтов.


СТРУКТУРА ПАМЯТИ


Рис. 7.1. Схема блока памяти

Теперь рассмотрим, как размещается блок ОЗУ объемом 1 Кбайт и блок ПЗУ объемом 256 байт в пространстве адресов, вырабатываемых микропроцессором. Для того чтобы осущест­вить привязку блоков ОЗУ и ПЗУ, старшие разряды адреса (линии АВ10-АВ15) подаются на схему дешифрации адреса (микросхемы D8, D11, рис. 7.1). Шесть старших разрядов адреса АВ10-АВ15 определяют, к какому килобайту памяти микропроцессора будет произведено обращение. Десять млад­ших разрядов адреса АВО-АВ9 адресуют байты памяти в пре­делах каждого килобайта. Каждому коду на АВ10-АВ15 соот­ветствует один килобайт памяти, но вследствие того, что инвер­тированные линии АВ12-АВ15 шины адреса поступают на микросхему D8, сигнал с выхода которой разрешает или запре­щает работу дешифратора D11, дешифратор D11 будет рабо­тать только при нулевых кодах на этих линиях. В зависимости от кода на линиях АВ10 — АВ15 низкий уровень будет появляться на одном из выходов 7, 6, 5 или 4 дешифратора D11 при усло­вии, что на втором управляющем входе дешифратора (вывод 1) будет высокий уровень. В табл. 7.1 дается соответствие кода на линиях АВ 10 — АВ 15 номеру вывода D11.

В табл. 7.1 приводятся адрес первого байта, адрес последнего байта и условный номер килобайта памяти, к которому происхо­дит обращение при определенном коде на линиях АВ10 — АВ15. Из пятой строки табл. 7.1 также видно, что если адрес, выраба­тываемый микропроцессором, лежит в диапазоне от 010000Q до 177 OOOQ, то ни на одном из выходов дешифратора не бу­дет низкого уровня, т. е. с помощью выходов этого дешифра­тора нельзя адресоваться к килобайтам с 4-го по 63-й.

Выходы дешифратора используются для привязки отдельных блоков памяти емкостью 1 Кбайт к определенным областям в пространстве адресов микропроцессора; для этого они соеди­нены со входами микросхемы памяти, разрешающими их рабо­ту, а на адресные входы микросхемы памяти подаются млад­шие разряды адреса, которые осуществляют адресацию ячеек памяти внутри микросхем.



Таблица 7.1

Код на линиях АВ10— АВ1 5

Номер вывода D11.на кото­ром низкий уровень напря­жения

Диапазон адресов обла­сти памяти в восьме­ричном коде

Номер адресуе­мого ки-

А15

А14

А13

А12

All

А10

 

 

от адреса

до адреса

лобайта

0

0

0

0

0

0

7

000 000

001 777

0

0

0

0

0

0

1

6

002 000

003 777

1

0

0

0

0

1

0

5

004000

005 777

2

0

0

0

0

1

1

4

006 000

007 777

3

Любой другой код

 

 

-

010 000

177777

4-63

Рис. 7.1. Схема блока памяти

Блок из микросхем ПЗУ подключен так, что он занимает самые младшие адреса, начиная с 000 000Q. Это сделано для размещения программы-монитора, которая должна начинать работать сразу после включения микро-ЭВМ, или нажатия кноп­ки СБРОС, в результате чего вырабатывается сигнал RESET, по которому микропроцессор начинает выполнять команду, расположенную по адресу 000 OOOQ (т. е. в ПЗУ). Заметим,что для адресации 256 байтов ПЗУ достаточно восьми адресных ли­ний ABO — AB7; линии АВ8, АВ9 излишни и поэтому к ПЗУ не подсоединены. В результате этого независимо от кода на ли­ниях АВ8 и АВ9 адресуется байт ПЗУ, определяемый адресом на линиях ABO — AB7. Это приводит к тому, что один и тот же байт ПЗУ можно считывать по адресам, в разрядах АВ8, АВ9 кото­рых находятся коды 00, 01, 10 или 11. Область памяти ПЗУ, состоящая из 256 байт, повторяется 4 раза в нулевом килобай­те памяти. Ясно, что это повторение не мешает работе микро­процессора.

Такая схема адресации с неиспользованием части разрядов адреса называется схемой с неполной дешифрацией адреса. При необходимости использовать весь нулевой килобайт и поме­стить в пространство его адресов еще три блока памяти по 256 байт в каждом нужно использовать для разрядов АВ8 и АВ9 полный дешифратор, устроенный так же, как для разря­дов АВ10 и АВ11. Схема с неполной дешифрацией адреса при­водит к тому, что используется не все адресное пространство, но зато требуется меньше микросхем для ее реализации, и по­этому такая схема часто применяется в простых микро-ЭВМ.



Блок из микросхем ОЗУ подключен к выходу 4 дешифрато­ра D11, и поэтому килобайт ОЗУ адресуется как 3-й килобайт в адресном пространстве микропроцессора. На рис. 7.2 при­ведена карта распределения памяти в ПМ-ЭВМ.

Этого объема памяти достаточно для нормальной работы, но его можно при необходимости увеличить. Объем исполь­зуемого ОЗУ можно увеличить до 3 Кбайт, ничего не переделы­вая в схеме дешифрации адреса, а просто подключением допол­нительных блоков ОЗУ емкостью по 1 Кбайт к выходам 6 и 5 дешифратора D11 (рис. 7.1). Можно также увеличить объем используемого ПЗУ, если построить его из микросхем боль­шей емкости, например из микросхем К573РФ1 с организацией 1024x8 бит (1 Кбайт) или микросхем КР556РТ5 емкостью 4 Кбита и с организацией 512x8 бит (0,5 Кбайта). В первом случае будет использоваться весь 0-й килобайт, а во 2-м ячей­ки ПЗУ будут повторяться во второй половине 0-го килобайта.

 

 

 

000 000

 

 

 

ПЗУ

 

000 377

 

 

000 400

 000 777

Повторяется ПЗУ

 

001 000

 001 377

Повторяется ПЗУ

 0 и К баит

001 400

 001 777

Повторятся ЛЗУ

 

002 000

 

 

 

Память

 

 

отсутствует

1-й К байт

003 777

 

 

004 000

 

 

 

Память

 

 

отсутствует

 2-й K бaйm

005 777

 

 

005 000

 

 

 

ОЗУ

3-й K бaйm

 

Область стека

 

007 777

 

 

Рис. 7.2. Карта распределения памяти

Осталось рассмотреть подключение блока памяти к линиям шины управления. Линия R (рис. 7.1) подключена к входам 13 микросхем ПЗУ и разрешает их работу во время цикла считывания байта из ПЗУ. Линия W подключена к входам 10 микросхем ОЗУ и управляет записью байта в ОЗУ. Если на ней во время цикла обращения к ОЗУ поддерживается высокий уровень, то происходит считывание, а если низкий - то запись байта. Сиг­нал RW, вырабатывающийся и сигналом R, и сигналом W, служит Для того, чтобы разрешать работу дешифратора D11 только во время низкого уровня сигналов R и W.


Это необходимо, чтобы считывание и запись в блок памяти происходили во время выра ботки сигналов R и W, которые формируются сигналами DBIN и WR микропроцессора, определяющими момент передачи ин­формации по шине данных.

СТРУКТУРА ПАМЯТИ


Рис. 7.3. Временная диаграмма работы блока памяти при чтении

СТРУКТУРА ПАМЯТИ


Рис. 7.4. Временная диаграмма работы блока памяти при записи

Считывание из ОЗУ микропроцессор может выполнить в цик­лах ВЫБОРКА КОМАНДУ, ЧТЕНИЕ ИЗ ПАМЯТИ, ЧТЕНИЕ ИЗ СТЕКА а считывание из ПЗУ - только в циклах ВЫБОРКА КОМАНДЫ И ЧТЕНИЕ ИЗ ПАМЯТИ. Временные диаграммы сигналов шины адреса, данных и управления приведены на рис. 7.3. Запись информации в ОЗУ микропроцессор может вы­полнить в циклах ЗАПИСЬ В ПАМЯТЬ, ЗАПИСЬ В СТЕК. Временные диаграммы записи приведены на рис. 7.4.



Содержание раздела