Справочник - Материнские платы и процессоры




Старые песни о главном - часть 3


В принципе, потенциал диэлектриков на основе гафния известен давно, однако сложность заключалась в подборе оптимального компонентного состава соединений, и на решение именно этой задачи были направлены усилия Texas Instruments.

На фоне оптимизма относительно перспектив материалов с высоким показателем k, нельзя не отметить, что их использование все же порождает ряд проблем. Например, считается, что это приводит к возможному снижению подвижности носителей заряда и смещению порогового напряжения. На один из возможных механизмов снижения подвижности носителей заряда, вызванного генерацией "мягких" фононов, связанных с электронами в канале проводимости, указал в прошлом году Макс Фишетти (Max Fischetti), сотрудник IBM T.J. Watson Research Center, предсказав также значительное снижение тока утечки при использовании его методики. Эффективность данной методики была подтверждена компанией Intel, - ее специалистам удалось снизить обнаруженное IBM рассеяние фононов использованием затвора, состоящего из слоя нитрида титана поверх оксида гафния. Кроме того, частично бороться со снижением подвижности носителей заряда, из-за которой транзисторы срабатывают значительно медленнее, помогает методика "напряженного кремния" (strained silicon).

Пожалуй, на этой технологии стоит остановиться подробнее, ведь Intel планирует использовать ее уже при производстве микросхем с проектной нормой 90 нм, то есть совсем скоро. Нельзя не отметить, что идея напряженного кремния предельно проста. Для того чтобы обеспечить удовлетворительный уровень прохождения носителей заряда, специалисты корпорации Intel в буквальном смысле решили растянуть кристаллическую решетку транзистора, тем самым увеличить расстояние между атомами, а значит, и облегчить прохождение тока. При этом инженеры подразделения Logic Technology Development Division разработали два независимых способа "растяжения" кремния для разных типов транзисторов. Напомним, существует два типа CMOS-транзисторов (CMOS, complimentary metal oxide semiconductor - полупроводниковая технология, применяемая при изготовлении всех логических микросхем, включая микропроцессоры и чипсеты): n-типа, обладающие электронной проводимостью, и p-типа - с дырочной проводимостью.


Содержание  Назад  Вперед