Операционные усилители

         

Источник тока на ОУ в инвертирующем включении


(U4 – U2)/R1 – U2/R3 – I2 = 0.

    Исключив потенциал U4, получим выражение:

I2 =U1/R>1 + U2[( R2 – R3 – R1)/R1R3],

    из которого следует, что выходной ток не будет зависеть от выходного напряжения, если выполняется условие

R3 =R2 – R1.

    В заключение заметим, что рассмотренные выше источники тока с заземленной нагрузкой представляют собой системы с регулированием по возмущению (системы с компенсирующими связями). В отличие от систем с регулированием по отклонению (систем с отрицательными обратными связями), системы с регулированием по возмущению требуют точной настройки параметров связей, как это и следует из последнего выражения и выражения (8). Схемы источников тока с незаземленной нагрузкой – это системы с регулированием по отклонению. Они не требуют точной настройки связей, а лишь по возможности большего значения дифференциального коэффициента усиления ОУ.





Источник тока, управляемый напряжением, для заземленной нагрузки


    Для определения выходного тока источника запишем уравнения по первому закону Кирхгофа для n- и р-входов и выхода операционного усилителя:

(Uвых – Un)/R2 – Un/R3 = 0,

(U1 – Up)/R2 + (U2 – Up)/R2 = 0,

(Uвых – U2)/R1 – (U2 – Up)/R2 – I2 = 0. /p>

    Из этих уравнений с учетом того, что Un=Up, получим:



     Приравняв нулю коэффициент при U2, найдем условие независимости выходного тока от напряжения на нагрузке –

Оглавление Следующая страница -->

R3 =(R2)2/(R1 + R2). (8)

    Теперь выражение для выходного тока источника будет иметь вид:

I2= U1/ (R1||R2).

    Выполняя точную подстройку R3, можно добиться бесконечного выходного сопротивления источника тока на низких частотах при реальных характеристиках операционного усилителя. Недостаток схемы, однако, состоит в том, что внутреннее сопротивление Rи

управляющего источника напряжения U1 входит в выражение (8) (оно добавляется к сопротивлению резистора, подключенного ко входу схемы). К тому же, ток управляющего источника напряжения зависит от сопротивления нагрузки. В результате полная балансировка источника невозможна, если Rи , как, например, у стабилитронов, зависит от тока.

    Этого недостатка не имеет схема, приведенная на рис. 10. Здесь входной резистор присоединен к виртуальному нулю. Другое достоинство этой схемы состоит в отсутствии синфазного сигнала. Для расчета выходного тока в этой схеме используем следующее соотношение:

U4 = – U3 = U1 + (R2/R3) U2 .

    Запишем уравнение по первому закону Кирхгофа для выхода схемы.



Источники напряжения, управляемые током


    Для точных измерений слабых токов, в цифро-аналоговых преобразователях и в некоторых других устройствах требуется получение напряжения, пропорционального входному току. При этом во многих случаях необходимо, чтобы преобразователь ток-напряжение

имел, по возможности, минимальные входное и выходное сопротивления (в идеале – нулевое). Схема источника напряжения, управляемого током, приведена на рис. 7.

Если усилитель идеальный, то i>Uд= 0 и Uвых= –RIвх. Если коэффициент усиления ОУ KU конечен, то

(5)

(6)

    где Rи

– сопротивление источника входного сигнала.



Источники тока для нагрузки, один


Если можно соединить один из полюсов нагрузки с положительным или отрицательным полюсами источника питания, то схема источника тока значительно упрощается (рис. 11). Эти схемы подобны схемам источников тока на транзисторах, но для исключения влияния собственных параметров транзисторов в схему введены операционные усилители. Рассмотрим схему с неинвертирующим включением ОУ (рис. 11а).



Источники тока с биполярными транзисторами


     Выходное напряжение ОУ устанавливается таким, что напряжение на резисторе R1 равно U1. (Это естественно выполняется при положительном напряжении, когда транзистор не заперт). При этом ток через резистор R1 будет равен U1/R1. Выходной ток источника определится соотношением :

I2 =(U1/R1 )[1 –(1/B)]. (9)

    В это соотношение входит статический коэффициент усиления тока транзистора B. Это вызвано тем, что часть тока через резистор R1 (т.е. эмиттерного тока транзистора) ответвляется в базу. Влияние конечного усиления по току может быть уменьшено, если использовать составной биполярный транзистор, и практически исключено, если заменить его полевым, ток затвора которого пренебрежимо мал. В этом случае

I2 =(U1/R1).

    На рис. 11б приведена аналогичная схема источника тока с инвертирующим включением операционного усилителя. Здесь выходной ток определяется соотношением:

I2 = – (U1/R1)[(1 – (1/B)],

    т.е. для нормальной работы схемы входное напряжение должно быть отрицательным. Здесь также целесообразно использование составного биполярного или полевого транзисторов.

   В схемах на рис. 11 можно соединить нагрузку с отрицательным источником питания, заменив транзистор на комплементарный. При этом изменится и полярность управляющего напряжения. Дополнительным достоинством рассмотренных источников тока является то, что диапазон изменений токов и напряжений нагрузки здесь ограничивается только областью безопасной работы транзистора и не зависит от свойств ОУ.





Источники тока с нагрузкой в цепи обратной связи


     Поскольку дифференциальный коэффициент усиления ОУ KU имеет конечное значение, входное дифференциальное напряжение Uд

остается отличным от нуля. Для определения выходного сопротивления источника тока на рис. 8а запишем:

I1 = I2 = (U1–Uд)/R1,

Uд = –(Uвых/KU),

U2= Uд – Uвых.

    Отсюда получим следующее соотношение:

    Таким образом, выходное сопротивление источника тока будет равно

Оглавление Следующая страница -->

Rвых = – (дU2/дI2) = KUR1. (7)

    Оно пропорционально дифференциальному коэффициенту усиления ОУ. Выходное сопротивление схемы на рис. 8б может быть рассчитано аналогично.

    Рассмотренные источники тока обладают существенным недостатком. Ни к одному из зажимов нагрузки этих источников тока не может быть приложен постоянный потенциал (в том числе и нулевой), поскольку в противном случае либо выход, либо инвертирующий вход операционного усилителя будет закорочен. Приведенные ниже схемы не имеют этого недостатка.





Источники тока с незаземленной нагрузкой


В инвертирующем и неинвертирующем усилителе по резистору отрицательной обратной связи протекает ток I2=U1/R1. Таким образом, этот ток не зависит от падения напряжения на резисторе R2. Следовательно, оба этих усилителя можно использовать в качестве источников тока, в которых вместо резистора обратной связи включена нагрузка (рис. 8).



Источники тока с заземленной нагрузкой


Принцип действия источника тока, схема которого приведена на рис. 9, состоит в том, что выходной ток измеряется по падению напряжения на резисторе R1. Выходное напряжение ОУ устанавливается таким, что падение напряжения на резисторе R1 оказывается равным величине входного напряжения.



Источники тока, управляемые напряжением


    Источники тока, управляемые напряжением, предназначены для питания нагрузки током, сила которого не зависит от выходного напряжения ОУ и регулируется только входным напряжением схемы.



Оглавление Следующая страница -->



Преобразователь отрицательного сопротивления


Иногда возникает необходимость использования отрицательного сопротивления или источника напряжения с отрицательным сопротивлением. По определению сопротивление R=+U/I, где направление тока и напряжения совпадают. Если же в двухполюснике направления протекающего тока и приложенного напряжения не совпадают, отношение U/I будет отрицательным. Говорят, что такой двухполюсник обладает отрицательным сопротивлением. Отрицательные сопротивления могут быть получены только с применением активных схем, которые называют преобразователями отрицательного сопротивления (ПОС). Схема ПОС на операционном усилителе приведена на рис. 12. Выходное напряжение идеального ОУ определяется как

Uвых = U2 +I2R.

     Входной ток усилителя равен

I1 = (U1 – Uвых)/R.

    На входах идеального операционного усилителя напряжения равны, т.е. U1=U2, поэтому I2 = –I1. Отсюда следует, что U1/I1 = –R2.

    При выводе этих соотношений предполагалось, что схема находится в устойчивом состоянии. Однако, поскольку операционный усилитель охвачен одновременно положительной и отрицательной обратными связями, следует принять меры, чтобы выполнялись условия устойчивости. Физический смысл условий устойчивости для схемы ПОС с идеальным ОУ при резистивных обратных связях заключается в том, что глубина положительной обратной связи должна быть меньше, чем отрицательной. Для схемы на рис. 12 это означает, что сопротивление источника входного сигнала Rи

должно быть меньше R2.



Схема неинвертирующего интегратора


     Операторная передаточная функция этой цепи, определяемая как отношение изображений по Лапласу выходного и входного напряжений представляет собой соотношение:

    т.е. с точностью до знака совпадает с передаточной функцией интегратора (2). Роль резистора с отрицательным сопротивлением выполняет ПОС (рис. 13б). С учетом коэффициента передачи неинвертирующего усилителя для этой схемы имеем:



Оглавление Следующая страница -->



Схема преобразователя отрицательного сопротивления


     Примером практического применения преобразователя отрицательного сопротивления является схема неинвертирующего интегратора (рис. 13). На рис. 13а приведена эквивалентная схема интегратора в виде интегрирующей RС-цепочки, содержащей резистор с отрицательным сопротивлением.



Схемы линейного преобразования сигналов


При построении линейных электрических схем кроме пассивных элементов используются идеализированные активные элементы в виде управляемых источников тока и напряжения. Кроме того, применяются идеализированные преобразующие схемы, например, преобразователь отрицательного сопротивления. Ниже рассмотрены основные принципы их реализации.



Измерительные усилители


    Во многих измерительных схемах необходимо измерять разность потенциалов между двумя точками электрической цепи, каждая из которых имеет ненулевой потенциал относительно общей точки измерительной схемы. Для этой цели используются измерительные усилители, которые представляют собой устройства с дифференциальным входом, построенные так, что они усиливают только разность напряжений, поданных на их входы, и не реагируют на синфазное напряжение. В переводной литературе такие усилители часто называются инструментальными усилителями.



Оглавление Следующая страница -->



Измерительный усилитель на одном ОУ


В простейшем случае в качестве измерительного усилителя может быть использован ОУ в дифференциальном включении (рис. 22). При выполнении условия R1/R2=R3/R4 усиление дифференциального сигнала намного больше усиления синфазного сигнала и коэффициент ослабления синфазного сигнала (КОСС) будет максимальным.



Измерительный усилитель на трех ОУ


Улучшить характеристики рассмотренной схемы измерительного усилителя можно, включив между источником сигнала и каждым из входов неинвертирующий повторитель. Эти повторители будут служить буферами, в результате чего входное сопротивление измерительного усилителя повысится, а влияние выходного сопротивления источников сигнала на дифференциальный коэффициент усиления и КОСС практически будет устранено. Недостатком такого решения является то, что здесь потребуется большой КОСС и в повторителях и в выходном ОУ. Лучшими характеристиками обладает схема, приведенная на рис. 23, и принятая в качестве стандартной схемы измерительного усилителя.



Схема измерительного усилителя на трех ОУ


    Как видно из рис. 23, напряжение на резисторе R1 составляет U1 – U2. Отсюда следует,что

    Эта разность преобразуется дифференциальным усилителем на ОУ3 в напряжение Uвых относительно земли. Обычно выбирается R2 = R3 и R4 = R5 = R6 = R7. В таком случае дифференциальный коэффициент усиления

    Коэффициент усиления синфазного сигнала (из-за разбаланса резисторов):

Оглавление Следующая страница -->

(29)

     Коэффициент усиления синфазного сигнала (из-за конечного значения КОСС ОУ3):

КСФ2 = 1/КОССОУ3 (30)

    Общий КОСС

измерительного усилителя определяется соотношением (28).

Пример 2. Пусть в схеме на рис. 23 R1= 1 кОм,R2 = R3

= 50 кОм, R4 = R6

= R7 = 10 кОм. Сопротивление резистора R5 отличается от номинального значения 10 кОм на 1% и составляет 9,9 кОм. Тогда дифференциальный коэффициент усиления схемы равен 101, а КОСС – 20200, что выше, чем в предыдущем примере.

    Измерительные усилители на трех ОУ выпускаются в виде ИМС с внутренними согласованными резисторами (AD623, LM363, ICL7605 и др.). Обычно они имеют выводы для подключения внешнего резистора R1, которым задается дифференциальный коэффициент усиления. Например, измерительный усилитель INA118 фирмы Burr-Brown имеет низкое смещение нуля Uсм = 50 мкВ, широкий диапазон напряжений питания (+/-1,35 ... +/-18 В) и входных напряжений (до +/-40 В), малый потребляемый ток – 0,35 мА и широкий диапазон коэффициентов усиления (1 – 10000), устанавливаемых одним внешним резистором. В табл. 1 представлены основные характеристики некоторых моделей измерительных усилителей.



Схема простейшего измерительного усилителя


    Дифференциальный коэффициент усиления при выполнении указанного выше условия

    Коэффициент усиления синфазного сигнала, обусловленный рассогласованием резисторов, равен

.
(26)

    Коэффициент усиления синфазного сигнала, обусловленный конечным значением КОСС операционного усилителя, равен

.
(27)

    Здесь КОСС выражается отношением, а не в децибелах.

    Коэффициент ослабления синфазного сигнала всей схемы:

КОСС =КД/(КСФ1 + КСФ2). (28)

    Дифференциальное входное сопротивление:

Rвх.д=R1 + R3.

    Поскольку, как это следует из (26), КСФ1 может принимать отрицательные значения и зависит от сопротивлений резисторов схемы, подстройкой резистора R3 может быть достигнуто любое сколь угодно большое значение КОСС, в соответствии с выражением (28).

Пример 1. Пусть в схеме на рис. 22 R1=R3=2 кОм,R4=200 кОм. Сопротивление резистора R2отличается от номинального значения 200 кОм на 1% и составляет 198 кОм. Тогда дифференциальный коэффициент усиления схемы равен 100, а КОСС – 10100, что во многих применениях недостаточно.

    Эта простейшая схема имеет низкое входное сопротивление. Выходное сопротивление источника сигнала влияет на величину дифференциального коэффициента усиления и на коэффициент ослабления синфазного сигнала, что почти всегда требует точной настройки параметров схемы. Для изменения коэффициента усиления нужно одновременно менять сопротивления двух резисторов. Занимающая ведущее место в мире по выпуску измерительных усилителей фирма Burr-Brown выпускает несколько моделей ИМС измерительных усилителей, построенных по схеме на рис.22. Такие ИМС как INA133, INA143 имеют фиксированный коэффициент усиления, задаваемый встроенными резисторами и высокое значение КОСС (до 86 дБ), достигаемое за счет лазерной подгонки. ИМС INA145, INA146 включают дополнительный неинвертирующий усилитель, коэффициент усиления которого может задаваться внешними резисторами. Микросхемы измерительных усилителей содержат цепи защиты входов, допускающие, например, у INA146 синфазные и дифференциальные напряжения до 100 В.





Очень дешевый. Может


Оглавление Следующая страница -->

Модель Uпит, В Усиле- ние Uсм, мВ Вх. ток, нА Погрешн. усиления (К=10), % КОСС, дБ Скор. нараст., В/мкс Ток потр., мА Примечание
INA143 +/-2,25... +/-18 0,1; 10 0,25 - - 86 5 0,95 1 ОУ с переключаемыми выводами резисторов
MAX4199 2,7...7,5 10 0,5 - 0,03 - - 0,05 1 ОУ. Микромощный
INA146 +/-2,25... +/-18 0,1...100 - - - 80 0,45 0,57 2 ОУ. Допустимые синфазное и дифференциальное напряжения - +/-100 В
INA118 +/-1,35... +/-18 1...1000 0,12 5 0,02 110 (K=10) 0,9 0,38 3 ОУ. Допустимые синфазное и дифференциальное напряжения - +/-40 В
INA116 - 1...1000 1 25фА 0,02 106 (K=100) 0,8 - 3 ОУ. Допустимые синфазное и дифференциальное напряжения - +/-40 В
PGA204 - 1;10; 100;1000 0,05 20 0,024 110 (K=100) 0,7 - Программируемый коэффициент усиления
AD623 +/-2,5... +/-6 1...1000 0,2 25 0,35 90 (K=10) 0,3 0,58 3 ОУ. Очень дешевый. Может ра- ботать с одним источником питания
AD625 +/-6... +/-18 1...10000 0,02 15 0,02 105 (K=10) 5 5 3 ОУ. Широкополосный
LT1167 +/-2,3... +/-18 1...10000 0,06 0,35 0,08 120 (K=100) - - 3 ОУ. Допустимые синфазное и дифференциальное напряжения - +/-100 В
МАХ4197 2,7...7,5 100 0,15 - 0,05 (K=100) - - 0,11 3 ОУ. Фиксированный коэффициент усиления

Активный фильтр верхних частот второго порядка


Для упрощения расчетов положим a = 1 и С1 = С2 =С. При этом получим следующие формулы:

Kбеск = 1, R1 = 2/wcCa1, R2 =a1/2wcCb1.

    Если АЧХ фильтра второго порядка оказывается недостаточно крутой, следует применять фильтр более высокого порядка. Для этого последовательно соединяют звенья, представляющие собой фильтры первого и второго порядка. В этом случае АЧХ звеньев фильтра перемножаются (в логарифмическом масштабе – складываются). Однако следует иметь в виду, что последовательное соединение, например, двух фильтров Баттерворта второго порядка, не приведет к получению фильтра Баттерворта четвертого порядка. Результирующий фильтр будет иметь другую частоту среза и другую частотную характеристику. Поэтому необходимо задавать такие коэффициенты звеньев фильтра, чтобы результат перемножения их частотных характеристик соответствовал желаемому типу фильтра.

    Полосовой фильтр второго порядка можно реализовать на основе схемы Саллена-Ки, как это показано на рис. 19. Передаточная функция фильтра имеет вид:

Оглавление Следующая страница -->

.
(22)



Двухполупериодный выпрямитель с незаземленной нагрузкой


Мостовая схема выпрямляет обе полуволны входного сигнала, при этом выпрямленный ток протекает через нагрузку:

Iвых=|Uвх|/R.

    Эта схема не требует согласования резисторов и имеет высокое входное сопротивление.

    Простейшая схема двухполупериодного выпрямителя с заземленной нагрузкой приведена на рис. 30а. Здесь используется дифференциальное включение ОУ.



Двухполупериодный выпрямитель с заземленным диодом


    Положительная полуволна входного напряжения запирает диод, в результате чего схема работает в режиме неинвертирующего усилителя с коэффициентом передачи, равным единице и Uвых = Uвх. Отрицательная полуволна открывает диод. Если бы прямое падение напряжение на диоде было равно нулю, то схема работала бы в режиме инвертирующего усилителя с единичным коэффициентом и Uвых=–Uвх. Схема очень проста, но из-за неравенства нулю прямого напряжения на диоде последнее равенство выполняется с большой погрешностью.

    Точность можно повысить, если в схеме на рис. 30а заменить диод VD1 моделью идеального диода на ОУ2 (рис. 30б). Здесь при положительной полуволне входного сигнала выходное напряжение ОУ2 будет отрицательным, в результате чего диод VD1 закроется, а VD2 откроется. Выход усилителя ОУ2 будет соединен с общей точкой практически накоротко, и цепь обратной связи усилителя разомкнута. Усилитель ОУ1 работает в режиме неинвертирующего повторителя. При отрицательной полуволне входного сигнала диод VD1 открыт, а диод VD2 закрыт. Цепь обратной связи ОУ2 замкнута через открытый диод VD1, поэтому напряжение между входами ОУ2, а стало быть и на неинвертирующем входе ОУ1, близко к нулю. Тогда усилитель ОУ1 работает в режиме инвертирующего повторителя.

    Схема на рис. 30б

довольно проста, но имеет разное входное сопротивление для положительных и отрицательных сигналов и требует согласования резисторов R1. Усилитель ОУ2 должен допускать короткое замыкание выхода и большое дифференциальное напряжение.

    Лучшие характеристики имеет схема, приведенная на рис. 31, в которой применено инвертирующее включение операционных усилителей. Схема включает сумматор на ОУ2 и однополупериодный выпрямитель на ОУ1 (см. левую нижнюю схему на рис. 28).



Фильтры нижних частот


Схема простейшего фильтра нижних частот приведена на рис. 14. Передаточная функция этого фильтра определяется выражением: W(s) = 1/(1+sRC).



Фильтры верхних частот


    Используя логарифмическое представление, можно перейти от нижних частот к верхним, зеркально отобразив амплитудно-частотную характеристику коэффициента передачи относительно частоты среза, т.е. заменив W на 1/W или S на 1/S. При этом частота среза остается без изменения, а K0 переходит в Kбеск. Из выражения (13) при этом получим

.
(14)





Логарифмирующие и экспоненциальные преобразователи


В логарифмирующих и экспоненциальных преобразователях для получения требуемой функциональной характеристики используются свойства смещенного в прямом направлении p-n-перехода диода или биполярного транзистора. Такие преобразователи входят в качестве отдельных узлов в различные устройства, выполняющие математические операции. Логарифмирующие преобразователи применяются также для компрессии сигналов, имеющих большой динамический диапазон, например звуковых сигналов, причем некоторые из них перекрывают динамический диапазон в 140 дБ или 7 декад.

    На рис. 24 приведена схема простейшего логарифмирующего преобразователя. Эта схема очень проста, но имеет много недостатков, в частности большие отклонения от логарифмической зависимости и дрейф выходного напряжения при изменениях температуры.



Основная схема логарифмирующего преобразователя


    Ток диода приближенно описывается выражением:

Оглавление Следующая страница -->

(31)

    где U – напряжение на диоде,q – заряд электрона, k – постоянная Больцмана,I0 – обратный ток диода, Т – температура в градусах Кельвина.

    Тогда для вышеприведенной схемы получим:

    следовательно

    Для получения логарифмической зависимости необходимо, чтобы U1/R1 » I0, т.е.

(32)

    Для кремниевого диода I0 = 1 нА, а значение kT/q = 25 мВ при комнатной температуре.

    Простейший логарифмирующий преобразователь применяется редко из-за двух серьезных ограничений.

    Во-первых, как следует из (32), он очень чувствителен к температуре.

    Во-вторых, диоды не обеспечивают хорошей точности преобразования, т.е. зависимость между их прямым напряжением и током не совсем логарифмическая. Поэтому удовлетворительная точность в этой схеме может быть получена при изменении входного напряжения в пределах двух декад.

    Лучшие характеристики имеют логарифмирующие преобразователи на биполярных транзисторах. При этом возможно два вида включения транзистора – с заземленной базой (рис. 25а) и диодное (рис. 25б).



Основные понятия


    В электрических, радиотехнических и телемеханических установках часто решается задача: из совокупного сигнала, занимающего широкую полосу частот, выделить один или несколько составляющих сигналов с более узкой полосой. Сигналы заданной полосы выделяют при помощи частотных электрических фильтров.

    К частотным электрическим фильтрам различной аппаратуры предъявляются разные, порой противоречивые требования. В одной области частот, которая называется полосой пропускания, сигналы не должны ослабляться, а в другой, называемой полосой задерживания, ослабление сигналов не должно быть меньше определенного значения. Фильтр считают идеальным, если в полосе пропускания отсутствует ослабление сигналов и фазо-частотная характеристика линейна (нет искажения формы сигналов), а вне полосы пропускания сигналы на выходе фильтра отсутствуют.

    В зависимости от диапазона частот, относящихся к полосе пропускания, различают низкочастотные, высокочастотные, полосовые, полосно-подавляющие, избирательные (селективные) и заграждающие (режекторные) фильтры. Свойства линейных фильтров могут быть описаны передаточной функцией, которая равна отношению изображений по Лапласу выходного и входного сигналов фильтра.





Полосовые фильтры


Аналогично, путем замены переменных, можно преобразовать амплитудно-частотную характеристику фильтра нижних частот в амплитудно-частотную характеристику полосового фильтра. Для этого в передаточной функции фильтра нижних частот необходимо произвести следующую замену переменных:

Оглавление Следующая страница -->

.
(15)

     В результате такого преобразования АЧХ фильтра нижних частот в диапазоне 0 < W < 1 переходит в правую часть полосы пропускания полосового фильтра (1 < W < Wмакс). Левая часть полосы пропускания является зеркальным отображением в логарифмическом масштабе правой части относительно средней частоты полосового фильтра W = 1. При этом Wмин = 1/Wмакс. Рис. 16 иллюстрирует такое преобразование.



Прецизионные выпрямители на ОУ


Во многих устройствах обработки аналоговых сигналов, например, в измерительных схемах, необходимо выделение либо составляющих только одной полярности (однополупериодное выпрямление), либо определение абсолютного значения сигнала (двухполупериодное выпрямление). Эти операции могут быть реализованы на пассивных диодно-резистивных цепях, но значительное прямое падение напряжения на диодах (0,5 – 1 В) и нелинейность его вольт-амперной характеристики вносят в этом случае значительные погрешности, особенно при обработке слабых сигналов. Применение ОУ позволяет в значительной степени ослабить влияние реальных характеристик диодов.

    Однополупериодные выпрямители. Схемы однополупериодных выпрямителей, приведенные на рис. 28, отличаются друг от друга передаваемой волной входного сигнала (положительной или отрицательной) и знаком коэффициента передачи (инвертирующие и неинвертирующие). Неинвертирующие однополупериодные выпрямители имеют более высокое входное сопротивление, чем инвертирующие. В инвертирующем выпрямителе диод VD1 открывается на соответствующей полуволне сигнала, обеспечивая его передачу на выход с коэффициентом, определяемым отношением резисторов R1 и R2. Диод VD2 смещен при этом в обратном направлении. Неинвертирующий выпрямитель при передаче попускаемой полуволны работает примерно также, однако их функционирование в режиме отсечки существенно различается.



Преобразование нижних частот в полосу частот


     Нормированная ширина полосы пропускания фильтра DW= Wмакс– Wмин может выбираться произвольно. Из рис. 16 видно, что полосовой фильтр на частотах Wмакс и Wмин обладает таким же коэффициентом передачи, что и ФНЧ при W = 1. Если параметры ФНЧ нормированы относительно частоты среза, на которой его коэффициент передачи уменьшается на 3 дБ, то значение DW также будет нормированной шириной полосы пропускания. Учитывая, что

DW = Wмакс– Wмин  и  Wмакс*Wмин=1,

    получим выражение для вычисления нормированных частот среза полосового фильтра, на которых его коэффициент передачи уменьшается на 3 дБ:

.

    Избирательный (селективный) фильтр предназначен для выделения из сложного сигнала монохромной составляющей и по сути является узкополосным полосовым фильтром. Фильтры этого типа имеют АЧХ, подобные амплитудно-частотным характеристикам колебательных LC-контуров. Характерным для этих фильтров является пик АЧХ в области резонансной частоты fр. Характеристикой избирательности фильтра является добротность Q, определяемая как отношение резонансной частоты к полосе пропускания, т.е.

Q = fp/(fмакс – fмин) = 1/(Wмакс – Wмин) = 1/DW. (16)

    Простейший полосовой фильтр можно получить, применив преобразование (15) к передаточной функции ФНЧ первого порядка (10). В результате получим:

.
(17)

     Подставив выражение для добротности (16) в соотношение (17), получим передаточную функцию полосового фильтра

.
(18)

    Это выражение дает возможность определить основные параметры полосового фильтра второго порядка непосредственно из его передаточной функции.





Реализация активных фильтров на основе метода переменных состояния


В схемах фильтров, рассмотренных выше, используется минимальное число элементов (один операционный усилитель на два полюса передаточной функции). Эти схемы, однако, чувствительны к изменениям параметров элементов (особенно при высокой добротности) и не пригодны для построения универсальных программируемых фильтров. Поэтому в составе ИМС фильтров используются схемы, построенные на основе метода переменных состояния. В таких схемах реализуется решение дифференциальных уравнений, описывающих процессы в фильтрах. Схема двухполюсного фильтра, постороенного на основе метода переменных состояния, приведена на рис. 21. Эта схема широко применяется благодаря повышенной устойчивости и легкости регулировки. Схема состоит из двух интеграторов и двух сумматоров. Напряжение на выходе второго сумматора

.

    Поскольку

Оглавление Следующая страница -->

U2 = –Uвых/S и Uвых = –U1/S (24)

    (S=sRfC), передаточная функция фильтра имеет вид:

,
(25)



Реализация фильтров на операционных усилителях


С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рис. 17 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R3, (a – 1)R3, обеспечивает коэффициент усиления, равный a. Положительная обратная связь обусловлена наличием конденсатора С2. Передаточная функция фильтра имеет вид:

.
(21)



Активный фильтр нижних частот второго порядка


    Расчет схемы существенно упрощается, если с самого начала задать некоторые дополнительные условия. Можно выбрать коэффициент усиления a = 1. Тогда (a – 1)R3 = 0, и резистивный делитель напряжения в цепи отрицательной обратной связи можно исключить. ОУ оказывается включенным по схеме неинвертирующего повторителя. В простейшем случае он может быть даже заменен эмиттерным повторителем на составном транзисторе. При a = 1 передаточная функция фильтра принимает вид:

.

    Считая, что емкости конденсаторов С1 и С2 выбраны, получим для заданных значений а1 и b1 (см. (13)):

K0 = 1,

.

    Чтобы значения R1 и R2 были действительными, должно выполняться условие

.

    Расчеты можно упростить, положив R1 = R2 = R и С1 = С2 = С. В этом случае для реализации фильтров различного типа необходимо изменять значение коэффициента a. Передаточная функция фильтра будет иметь вид

.

    Отсюда с учетом формулы (13) получим

,

.

    Из последнего соотношения видно, что коэффициент a определяет добротность полюсов и не влияет на частоту среза. Величина a в этом случае определяет тип фильтра.

    Поменяв местами сопротивления и конденсаторы получим фильтр верхних частот (рис. 18). Его передаточная функция имеет вид:



Простейший фильтр нижних частот первого порядка


    Заменив s на jw, получим частотную характеристику фильтра. Для реализации общего подхода целесообразно нормировать комплексную переменную s. Положим

S=s/wc,

    где wc – круговая частота среза фильтра. В частотной области этому соответствует

jW =j(w

/wc).

    Частота среза wc фильтра на рис. 14 равна 1/RC. Отсюда получим S=sRC и

W(S)=1/(1+S). (10)

    Используя передаточную функцию для оценки зависимости амплитуды выходного сигнала от частоты, запишем

|W(jW)|2 =1/(1+W2).

    При W»1, т.е. для случая, когда частота входного сигнала w»wc, |W(jW)| = 1/W. Это соответствует снижению коэффициента передачи фильтра на 20 дБ на декаду.

    Если необходимо получить более быстрое уменьшение коэффициента передачи, можно включить n фильтров нижних частот последовательно. Передаточная функция такой системы имеет вид:

,
(11)

    где a1, a2 , ... , an – действительные положительные коэффициенты. Из этой формулы следует, что |W(jW)| ~ 1/Wn

при W»1. Полюса передаточной функции (11) вещественные отрицательные. Таким свойством обладают пассивные RC-фильтры n-го порядка. Соединив последовательно фильтры с одинаковой частотой среза, получим:

    Этот случай соответствует критическому затуханию.

    Передаточная функция фильтра нижних частот (ФНЧ) в общем виде может быть записана как

,
(12)

    где с1, с2 , ... , сn – положительные действительные коэффициенты, K0 –коэффициент усиления фильтра на нулевой частоте. Порядок фильтра определяется максимальной степенью переменной S. Для реализации фильтра необходимо разложить полином знаменателя на множители. Если среди нулей полинома есть комплексные, то рассмотренное ранее представление полинома (11) не может быть использовано. В этом случае следует записать его в виде произведения квадратных трехчленов:


,
(13)
    где ai и bi – положительные действительные коэффициенты. Для полиномов нечетных порядков коэффициент b1 равен нулю. Реализация комплексных нулей полинома на пассивных RC-цепях невозможна. Применение индуктивных катушек в низкочастотной области нежелательно из-за больших габаритов и сложности изготовления катушек, а также из-за появления паразитных индуктивных связей. Схемы с операционными усилителями позволяют обеспечить комплексные нули полиному без применения индуктивных катушек. Такие схемы называют активными фильтрами. Рассмотрим различные способы задания характеристик ФНЧ. Широкое применение нашли фильтры Бесселя, Баттерворта и Чебышева, отличающиеся крутизной наклона амплитудно-частотной характеристики (АЧХ) в начале полосы задерживания и колебательностью переходного процесса при ступенчатом воздействии. Амплитудно-частотные характеристики этих ФНЧ четвертого порядка приведены на рис. 15.

    Амплитудно-частотная характеристика фильтра Баттерворта имеет довольно длинный горизонтальный участок и резко спадает за частотой среза. Переходная характеристика такого фильтра при ступенчатом входном сигнале имеет колебательный характер. С увеличением порядка фильтра колебания усиливаются.

    Амплитудно-частотная характеристика фильтра Чебышева спадает более круто за частотой среза. В полосе пропускания она, однако, не монотонна, а имеет волнообразный характер с постоянной амплитудой. При заданном порядке фильтра более резкому спаду амплитудно-частотной характеристики за частотой среза соответствует бoльшая неравномерность в полосе пропускания. Колебания переходного процесса при ступенчатом входном воздействии сильнее, чем у фильтра Баттерворта.

    Фильтр Бесселя обладает оптимальной переходной характеристикой. Причиной этого является пропорциональность фазового сдвига выходного сигнала фильтра частоте входного сигнала. При равном порядке спад амплитудно-частотной характеристики фильтра Бесселя оказывается более пологим по сравнению с фильтрами Чебышева и Баттерворта.

    Тот или иной вид фильтра при заданном его порядке определяется коэффициентами полинома передаточной функции (13) фильтра.




Схема фильтра второго порядка, построенного на основе метода переменных состояния


    причем Q=R1/RQ, K0=R1/RK. Таким образом, на рис. 21 приведена схема полосового фильтра, параметры которого могут регулироваться независимо друг от друга. Найдем передаточные функции этой схемы относительно выходов U1, U2 и U3. Из (25) с учетом (24) получим:

,

,

.

    т.е. схема на рис. 21 в зависимости от того, к какой точке схемы подключен выход, может служить также фильтром нижних частот, фильтром верхних частот и заграждающим фильтром.

    Подобные фильтры выпускаются в виде ИМС многими фирмами, например, AF100/150 (National Semiconductor), LTC1562 (Linear Technology) или МАХ274/275 (Maxim). Они имеют перестраиваемую частоту среза до нескольких сотен килогерц, порядок вплоть до восьмого и зачастую программируемый тип фильтра. Недостатком этих схем является необходимость в большом количестве внешних высокоточных элементов. От этого недостатка свободны фильтры на коммутируемых конденсаторах.





Схема экспоненциального преобразователя


    Выходное напряжение этой схемы определяется выражением:

Оглавление Следующая страница -->

при
(34)

    Промышленность выпускает несколько видов ИМС логарифмирующих и экспоненциальных преобразователей, например, ICL8048 и ICL8049. Некоторые из них предназначены для выполнения только одной функции, другие, такие как SSM-2100, могут осуществлять обе функции. Хорошие характеристики имеют такие ИМС, как LOG100 с динамическим диапазоном 5 декад и суммарной погрешностью не более 0,37% и AD8309 с динамическим диапазоном 95 дБ в полосе частот до 350 МГц.





Схема полосового фильтра второго порядка


     Приравнивая коэффициенты этого выражения к коэффициентам передаточной функции (18), получим формулы для расчета параметров фильтра:

fp = 1/2pRC; Kp

= a/(3 – a); Q = 1/(3 – a).

    Недостаток схемы состоит в том, что коэффициент усиления на резонансной частоте Kp и добротность Q не являются независимыми друг от друга. Достоинство схемы – ее добротность изменяется в зависимости от a, тогда как резонансная частота от коэффициента a не зависит.

    Активный заграждающий фильтр может быть реализован на основе двойного Т-образного моста. Хотя двойной Т-образный мост сам по себе является заграждающим фильтром, его добротность составляет только 0,25. Ее можно повысить, если мост включить в цепь обратной связи ОУ. Один из вариантов такой схемы приведен на рис. 20. Сигналы высоких и низких частот проходят через двойной Т-образный мост без изменения. Для них выходное напряжение фильтра равно aUвх. На резонансной частоте выходное напряжение равно нулю. Передаточная функция схемы на рис. 20 имеет вид:

,

    или учитывая, что wр= 1/RC,

Оглавление Следующая страница -->

.
(23)

    С помощью этого выражения можно непосредственно определять требуемые параметры фильтра. Задав коэффициент усиления неинвертирующего усилителя равным 1, получим Q=0,5. При увеличении коэффициента усиления добротность растет и стремится к бесконечности, если a

стремиться к 2.



Схема скорректированного логарифмирующего преобразователя


    В экспоненциальных преобразователях обычно применяется показанное на рис. 27 включение транзистора с заземленной базой.



Схема выпрямителя, в которой ОУ работают в линейном режиме


     Прежде всего рассмотрим принцип работы ОУ1. При положительном входном напряжении он работает как инвертирующий усилитель. В этом случае напряжение U2 отрицательно, т.е. диод VD1 проводит, а VD2 закрыт, поэтому U1 = –Uвх. При отрицательном входном напряжении U2 положительно, т.е. диод VD1 закрыт, а VD2 проводит и замыкает цепь отрицательной обратной связи усилителя, которая препятствует насыщению усилителя ОУ1. Поэтому точка суммирования остается под нулевым потенциалом. Поскольку диод VD1

закрыт, напряжение U1 также равно нулю. Справедливы соотношения:

(35)

    Подключение сумматора на ОУ2 обеспечивает двухполупериодное выпрямление. Сумматор формирует напряжение

U>вых = –(Uвх + 2U1).

     Учитывая формулу (35), получаем:

    Это и есть искомая функция двухполупериодного выпрямителя.

    Достоинством рассмотренной схемы является равное входное сопротивление для разных полярностей входного сигнала и отсутствие синфазного напряжения на входах усилителей. Недостаток – необходимость согласовывать большее число резисторов, чем в схеме на рис. 30б.





Схемы логарифмирования с транзистором


Зависимость тока коллектора транзистора от напряжения база-эмиттер при нулевом напряжении коллектор-база определяется выражением:

    где IK0 – обратный ток насыщения транзистора. Его значение для маломощных транзисторов составляет около 0,1 пА при комнатной температуре. Выходное напряжение этих схем определяется выражением:

Оглавление Следующая страница -->

(33)

     Поскольку IK0 транзистора существенно меньше, чем I0 диода, приближенное равенство (33) значительно точнее, чем (32). Это обеспечивает динамический диапазон схемы на рис. 25а до 7 декад.

Примечание 1: Для такого широкого диапазона входные токи ОУ должны быть не более 1 пА.

    Схема на рис. 25б менее точна (динамический диапазон до 4 декад) из-за того, что здесь ток коллектора транзистора отличается от входного тока схемы на величину тока базы. Однако эта схема менее склонна к самовозбуждению и имеет более высокое быстродействие.

    Для изменения полярности входного напряжения в схеме на рис. 25б

достаточно просто “перевернуть” транзистор. В схеме на рис. 25а для отрицательных входных напряжений необходимо использовать pnp-транзистор.

    Входные сигналы обратной полярности могут вывести из строя транзистор в схеме на рис. 25а, т.к. операционный усилитель при этом входит в насыщение, и на переход база-эмиттер подается обратное напряжение, практически равное напряжению питания. Поэтому необходимо принять меры для защиты транзистора. С этой целью в схему включают дополнительные диоды.

    Как уже отмечалось выше, схема с заземленной базой транзистора склонна к самовозбуждению. Это вызвано тем, что в цепи обратной связи усилителя есть элемент, вносящий дополнительное усиление напряжения (транзистор, включенный по схеме с общей базой), поэтому общий коэффициент передачи петли обратной связи повышается. Даже усилитель с полной внутренней коррекцией может потерять устойчивость при увеличении контурного усиления. На диаграмме Боде этому соответствует перемещение ЛАЧХ вверх относительно оси частот, что вызывает рост частоты среза и резкое сокращение запаса устойчивости по фазе. Для обеспечения устойчивости схемы можно применить такую же частотную коррекцию, что и при работе ОУ на емкостную нагрузку. Схема скорректированного логарифмирующего преобразователя приведена на рис. 26.



Схемы нелинейного преобразования сигналов на ОУ


    Часто возникает необходимость сформировать такое напряжение U2, которое было бы нелинейной функцией напряжения U1, т.е. U2=f(U1), например, U2=Ualog(U1/Ub) или U2=|U1|. Для реализации таких зависимостей существует три возможных способа. Можно применять либо физические эффекты, которые позволяют реализовать заданные зависимости, либо аппроксимировать их полиномиальными или степенными рядами.





Схемы однополупериодных выпрямителей


    Как в инвертирующем, так и в неинвертирующем выпрямителях диод VD2 введен для повышения их быстродействия. Если исключить этот диод, то в режиме отсечки ОУ входит в состояние насыщения.

    При переходе в режим пропускания ОУ сначала должен выйти из насыщения, а затем его выходное напряжение будет достаточно долго нарастать до уровня открывания диода VD1. Введение диода VD2предотвращает насыщение ОУ и ограничивает перепад его выходного напряжения при смене полярности входного сигнала. В неинвертирующей схеме диод VD2

обеспечивает ограничение выходного напряжения ОУ путем замыкания его выхода на землю, поэтому ОУ должен допускать короткое замыкание на выходе в течение неограниченного времени. Кроме того, в неинвертирующей схеме операционный усилитель должен иметь большое допустимое дифференциальное входное напряжение и малое время восстановления из режима ограничения выходного тока.

    Существенным недостатком представленных выше схем является их высокое выходное сопротивление, имеющее, к тому же, нелинейный характер.

    Двухполупериодные выпрямители. Наиболее просто реализуются прецизионные двухполупериодные выпрямители с незаземленной нагрузкой, например, стрелочным миллиамперметром. Схема такого устройства приведена на рис. 29. Здесь операционный усилитель служит в качестве управляемого по напряжению источника тока. Поэтому выходной ток не зависит от падения напряжения на диодах и сопротивления нагрузки Rн.



Заграждающие (режекторные) фильтры


    Для выборочного подавления составляющих определенных частот необходим фильтр, коэффициент передачи которого на резонансной частоте равен нулю, а для нижних и верхних частот имеет постоянное значение. Такой фильтр называется заграждающим. Для оценки избирательности введем добротность подавления сигнала Q = fр/Df, где Df – полоса частот, на краях которой коэффициент передачи падает на 3 дБ. Чем больше добротность фильтра, тем быстрее возрастает коэффициент передачи при удалении от резонансной частоты.

    Передаточную функцию заграждающего фильтра можно получить из передаточной функции ФНЧ с помощью преобразования в частотной области заменой:

Оглавление Следующая страница -->

.
(19)

    Здесь DW= 1/Q, как и ранее, нормированная полоса частот. В результате такого преобразования АЧХ фильтра нижних частот из области 0 < W < 1 переходит в область пропускаемых частот 0 < W < W1заграждающего фильтра. Кроме того, она зеркально отображается в логарифмическом масштабе относительно резонансной частоты. Для резонансной частоты W = 1 значение передаточной функции равно нулю. Как и в случае полосовых фильтров, при преобразовании порядок фильтра удваивается.

    Применив преобразование (19) к передаточной функции ФНЧ первого порядка (10), получим:

.
(20)

     Подставив jW вместо S в выражение (20), получим частотную характеристику заграждающего фильтра.





Автоколебательный мультивибратор


Схема автоколебательного мультивибратора приведена на рис.33а. Он состоит из инвертирующего триггера Шмитта, охваченного отрицательной обратной связью с помощью интегрирующей RC-цепочки.

) и временнaя диаграмма его работы (б)">



Блок-схема электронного генератора


    Условием генерации стационарных колебаний замкнутой схемой является равенство выходного напряжения схемы обратной связи и входного напряжения усилителя. Это условие записывается следующим образом:

     Коэффициент петлевого усиления должен, таким образом, равняться

Оглавление Следующая страница -->

U = 1. (40)

    Из последнего комплексного соотношения вытекают два вещественных:

|b||КU| = 1. (41)

j + y =0, 2p , ... . (42)

     Уравнение (41) называют условием баланса амплитуд, а (42) – условием баланса фаз. Баланс амплитуд означает, что незатухающие колебания в замкнутом контуре могут существовать только тогда, когда усилитель компенсирует потери в схеме обратной связи. Условие баланса фаз означает, что восполнение энергии в системе производится в такт ее собственным колебаниям.





Генератор прямоугольного и треугольного напряжений


Как видно из диаграммы на рис. 33б, в схеме мультивибратора формируется напряжение не только прямоугольной формы, но и формы, близкой к треугольной (на конденсаторе). Времязадающая RC-цепь мультивибратора выполняет приближенное интегрирование выходных прямоугольных колебаний. Заменив эту цепь интегратором на ОУ, получим генератор, на одном из выходов которого формируются прямоугольные, а на другом – треугольные колебания (рис. 35). Здесь на усилителе ОУ1 выполнен неинвертирующий триггер Шмитта, а на ОУ2 – интегратор.



Генераторы сигналов на ОУ


    Неотъемлемой частью почти любого электронного устройства является генератор каких-либо колебаний. Кроме генераторов испытательных сигналов, выполняемых в виде отдельных изделий, источник регулярных колебаний необходим в любом периодически действующем измерительном приборе, в устройствах, инициирующих измерения или технологические процессы,и вообще в любом приборе, работа которого связана с периодическими состояниями или периодическими колебаниями. Так, например, генераторы колебаний специальной формы используются в цифровых измерительных приборах, осциллографах, радиоприемниках, телевизорах, часах, ЭВМ и множестве других устройств.

    В зависимости от конкретного применения генератор может использоваться просто как источник регулярных импульсов (например, синхросигналов в цифровой системе); от него может требоваться стабильность и точность (опорный интервал времени в частотомере), регулируемость (гетеродин радиоприемника) или способность генерировать колебания в точности заданной формы (синусоидальной в звукотехнике или пилообразной в развертке осциллографа).

    Схемотехнически электронный генератор представляет собой усилитель, охваченный положительной обратной связью. В качестве усилителя могут быть использованы схемы на дискретных транзисторах, цифровые ИМС, интегральные таймеры, а также операционные усилители. Использование ОУ позволяет построить стабильные генераторы с хорошим воспроизведением формы выходного сигнала.



Оглавление Следующая страница -->



RC-генератор синусоидальных колебаний


Простейшая схема RC-генератора синусоидальных колебаний на операционном усилителе приведена на рис. 37а.


    В качестве звена обратной связи использован полосовой RC-фильтр, частотные характеристики которого приведены на рис. 37б. Здесь по оси абцисс отложена относительная частота W = wRC, поэтому средняя частота равна единице. Фазовый сдвиг на средней частоте y(1)=0. Следовательно, для выполнения условия баланса фаз выход звена обратной связи должен быть подключен к неинвертирующему входу ОУ. Коэффициент усиления полосового фильтра на средней частоте |b(1)|=1/3. Для выполнения условия баланса амплитуд ОУ по неинвертирующему входу должен иметь коэффициент усиления К=3. Поэтому

Оглавление Следующая страница -->

R1=2R2 (43)

    В целом, цепь, подключенная к ОУ (полосовой фильтр и делитель R1R2), называется мостом Вина-Робинсона.

    При строгом выполнении условия (43) и идеальном ОУ в схеме на рис. 37а

будут существовать незатухающие колебания с частотой f=1/2pRC.Однако амплитуда этих колебаний не будет определена. Кроме того, даже самое незначительное уменьшение R1 по сравнению с (43) вызовет затухание колебаний. Напротив, увеличение R1 по сравнению с (43) приведет к нарастанию амплитуды колебаний вплоть до насыщения усилителя и, как следствие, к появлению заметных нелинейных искажений формы кривой выходного напряжения генератора. Эти обстоятельства требуют использования в составе генератора системы автоматического регулирования амплитуды. В простейшем случае для этого в качестве резистора R2

используют нелинейный элемент – микромощную лампу накаливания, динамическое сопротивление которой с ростом амплитуды тока увеличивается.

    Низкочастотные синусоидальные колебания могут быть также получены путем моделирования дифференциального уравнения синусоидальных колебаний с помощью операционных усилителей. Схема, реализующая этот метод, подобна схеме фильтра второго порядка, построенного на основе метода переменных состояния, приведенной на рис. 21. Эта схема, как и предыдущая, требует применения системы автоматического регулирования амплитуды колебаний.

    Сложность обеспечения высокой стабильности амплитуды колебаний при минимальных искажениях выходной синусоиды существенно усложняет построение генераторов синусоидальных колебаний и управление ими. Лучшие результаты во многих случаях, особенно на низких и инфранизких частотах, дает применение так называемых функциональных генераторов.

    Блок-схема простейшего функционального генератора приведена на рис. 38. Он включает генератор прямоугольного и треугольного напряжения и блок формирования синусоидального сигнала.



Релаксационные генераторы


Релаксационными называют генераторы, у которых регулирующий (усилительный) элемент работает в переключательном (релейном) режиме. К ним относят автоколебательный и ждущий мультивибраторы, генераторы пилообразных и треугольных колебаний. Основой релаксационных генераторов на ОУ является обычно регенеративный компаратор, называемый также триггером Шмитта. Регенеративный компаратор представляет собой операционный усилитель с резистивной положительной обратной связью (рис. 32).



Блок-схема функционального генератора


     Как показано на рис. 35, генератор прямоугольного и треугольного напряжения состоит из триггера Шмитта и интегратора, образующих замкнутый контур. Блок формирования синусоидального сигнала обычно представляет собой нелинейный функциональный преобразователь, например, на основе аналогового перемножителя. Если частота генератора постоянна, то в качестве блока формирования синусоидального сигнала можно использовать также фильтр нижних частот с полосой пропускания несколько выше частоты требуемого синусоидального сигнала.

    Функциональные генераторы производятся некоторыми фирмами в виде ИМС. Например, микросхема МАХ038 генерирует синусоидальные, треугольные, прямоугольные и импульсные сигналы в области частот от 0,1 Гц до 20 МГц, причем синусоидальные сигналы имеют коэффициент гармоник не более 0,75%. Лучшие результаты дает применение прямого цифрового синтеза с использованием цифро-аналоговых преобразователей.





Схема генератора прямоугольных и треугольных колебаний


     Интегратор интегрирует постоянное напряжение, имеющееся на выходе триггера Шмитта. Когда выходное напряжение интегратора достигает порога срабатывания триггера Шмитта, напряжение на его выходе U1 скачком меняет свой знак. Вследствие этого напряжение на выходе интегратора начинает изменяться в противоположную сторону, пока не достигнет другого порога срабатывания триггера Шмитта. Изменяя постоянную интегрирования RC, можно перестраивать частоту формируемого напряжения в широком диапазоне. Амплитуда треугольного напряжения U2 зависит только от установки уровня срабатывания триггера Шмитта Uп, который для данной схемы включения триггера составляет UМR1/R2 (UМ – по- прежнему напряжение насыщения ОУ).

    Период колебаний генератора равен удвоенному времени, которое необходимо интегратору, чтобы его выходное напряжение изменилось от –Uп

до +Uп. Отсюда следует, что

    Таким образом, частота формируемого напряжения не зависит от уровня напряжения насыщения операционного усилителя.



Оглавление Следующая страница -->



Схема мультивибратора (а) и временнaя диаграмма его работы (б)


    Когда напряжение uc достигает порога срабатывания триггера Шмитта, схема переключается и ее выходное напряжение скачком принимает противоположное значение. При этом конденсатор начинает перезаряжаться в противоположном направлении, пока его напряжение не достигнет другого порога срабатывания. Схема переключается в первоначальное состояние (рис. 33б).

    Анализ схемы мультивибратора позволяет записать дифференциальное уравнение:

Оглавление Следующая страница -->

.
(38)

    При начальных условиях uc(0) = –Uп

решение этого уравнения имеет вид:

     Значение напряжения, равное порогу срабатывания триггера Шмитта (условие uc(t)=Uп), будет достигнуто спустя время

t1 = RCln[1 + 2R1/R2].

     Период колебаний мультивибратора, таким образом, равен

T = 2t1 = 2RCln[1 + 2R1/R2]. (39)

    Как видно из последней формулы, период колебаний мультивибратора не зависит от напряжения Uм, которое, в свою очередь определяется напряжением питания Uпит. Поэтому частота колебаний мультивибратора на ОУ мало зависит от питающего напряжения.





Схема одновибратора (а) и временнaя диаграмма его работы (б)


     Если выходное напряжение ОУ отрицательное максимальное, то диод VD1 открыт, и напряжение на времязадающем конденсаторе uc небольшое отрицательное, равное примерно 0,5 В. При правильном выборе параметров схемы напряжение на неинвертирующем входе ОУ

,

    поэтому при отсутствии запускающего импульса Uзап схема находится в устойчивом состоянии. По приходе положительного запускающего импульса достаточной амплитуды операционный усилитель за счет положительной обратной связи переключается в такое состояние, при котором его выходное напряжение равно +Uм. Диод VD2 закрывается и на р-входе ОУ устанавливается напряжение Uп, определяемое выражением (37). К времязадающей цепи RC

теперь приложено напряжение +Uм, под действием которого закрывается диод VD2 и начинается заряд конденсатора С. Когда, спустя время t1, напряжение uc достигнет порога Uп, операционный усилитель переключится и вернется в первоначальное состояние. Конденсатор С

начнет разряжаться и, спустя промежуток времени tр, называемый временем релаксации, напряжение uc

станет отрицательным, диод VD1 откроется и цикл закончится.

    Процессы в схеме описываются тем же уравнением (38), но начальное условие иное, и его решение для одновибратора имеет вид:

uc(t) = UM - (UM + UД)e-t/RC,

где UД – падение напряжения на открытом диоде VD1. Отсюда по условию uc(t1) = Uп найдем длительность импульса одновибратора:

t1 = RCln{[1 + (R1/R2)][1 + (UД/UМ)]}.

    Из последнего выражения видно, что длительность импульса одновибратора зависит от выходного напряжения насыщения ОУ, которое, в свою очередь определяется напряжением питания. Другим недостатком рассмотренной схемы является значительное время релаксации, в течение которого на одновибратор нельзя подавать запускающий импульс (иначе будет сокращена длительность выходного импульса). Эти недостатки отсутствуют у одновибратора, выполненного на специализированных ИМС, называемых аналоговыми таймерами.



Оглавление Следующая страница -->



Триггер Шмитта неинвертирующий (а) и инвертирующий (б)


     Переходная характеристика компаратора имеет гистерезис, ширина которого равна удвоенному пороговому напряжению 2Uп, причем для схемы на рис. 32а

Оглавление Следующая страница -->

,
(36)

    а для схемы на рис. 32б

(37)

    где Uм

– выходное напряжение насыщения усилителя.





Условия возбуждения


На рис. 36 показана блок-схема генератора. Усилитель усиливает входной сигнал в KU раз. При этом между выходным Uвых

и входным Uвх напряжениями усилителя возникает фазовый сдвиг j. К выходу усилителя подключена схема частотно-зависимой обратной связи, которая может представлять собой, например, колебательный контур. При этом напряжение, используемое для осуществления обратной связи, составляет bUвых. Обозначим аргумент комплексного коэффициента звена обратной связи b символом y.



Ждущий мультивибратор (одновибратор)


Обычное назначение ждущего мультивибратора – получение одиночного импульса заданной длительности. Отсчет длительности импульса начинается от фронта (или уровня) специального запускающего импульса. Для того, чтобы перейти от схемы автоколебательного к схеме ждущего мультивибратора, необходимо ввести дополнительно цепь запуска и цепь “торможения”. Схема одновибратора приведена на рис. 34а.



Частотная характеристика интегратора


     В заключение отметим, что к операционным усилителям, работающим в схемах интеграторов, предъявляются особенно высокие требования в отношении входных токов, напряжения смещения нуля и дифференциального коэффициента усиления по напряжению KU. Большие токи и смещение нуля могут вызвать существенный дрейф выходного напряжения при отсутствии сигнала на входе, а при недостаточном коэффициенте усиления интегратор представляет собой фильтр низких частот первого порядка с коэффициентом усиления KU и постоянной времени(1+KU)RC.



Оглавление Следующая страница -->



Интегратор с цепью задания начальных условий


После замыкания ключа S1 и размыкания ключа S2 интегратор начинает интегрировать напряжение U1, начиная со значения (2). Фирма Burr-Brown выпускает двухканальный интегратор ACF2101 со встроенными интегрирующими конденсаторами емкостью 100 пФ ключами сброса и хранения . Входные токи усилителей не превышают 0,1 пА.

    Используя формулу для определения коэффициента передачи инвертирующего усилителя и учитывая, что в схеме на рис. 2 R1=R, a вместо R2 включен конденсатор с операторным сопротивлением Z2(s)=1/(sC), можно найти передаточную функцию интегратора

Оглавление Следующая страница -->

(2)

    Подставив в (2) s=jw , получим частотную характеристику интегратора:

    Устойчивость интегратора можно оценить по частотным характеристикам петли обратной связи, причем в этом случае коэффициент передачи звена обратной связи будет комплексным:

    Для высоких частот b стремится к 1 и его аргумент будет нулевым. В этой частотной области к схеме предъявляются те же требования, что и к усилителю с единичной обратной связью. Поэтому здесь также следует ввести коррекцию частотной характеристики. Чаще для построения интегратора используют усилитель с внутренней коррекцией. Типичная ЛАЧХ схемы интегрирования на ОУ приведена на рис. 4. Постоянная интегрирования t = RC принята равной 100 мкс. Из рис. 4 видно, что при этом минимальное усиление цепи обратной связи составит |Kп|=|bKU| @ 600, т.е. будет обеспечена погрешность интегрирования не более 0,2%, причем не только для высоких, но и для низких частот.



Линейные аналоговые вычислительные схемы на ОУ


    Современные цифровые вычислительные машины позволяют с высокой точностью выполнять широкий круг математических операций с числами. Однако, в измерительных и управляющих системах величины, подлежащие обработке, как правило, представляют собой непрерывные сигналы, например, изменяющиеся значения электрического напряжения. В этих случаях приходится применять аналого-цифровые и цифро-аналоговые преобразователи. Такой подход оправдывает себя только тогда, когда требования к точности вычислений настолько высоки, что не могут быть обеспечены с помощью аналоговых вычислителей. Существующие аналоговые вычислители позволяют получить точность не свыше 0,1%. Ниже рассмотрены наиболее важные аналоговые вычислительные схемы на ОУ. Обычно мы будем полагать операционные усилители идеальными. При высоких требованиях к точности выполнения математических операций необходимо учитывать также свойства реальных усилителей.





Схема дифференциатора


   Используя формулу

    и учитывая, что в схеме на рис. 5 вместо R1 используется 1/sC, a R2=R, найдем передаточную функцию дифференциатора

Оглавление Следующая страница -->

K(s) = -sRC. (3)

    Подставив в (3) s=jw , получим частотную характеристику дифференциатора:

K(jw) = -jwRC,

    модуль которой

|K| = wRC (4)

    пропорционален частоте.

    Практическая реализация дифференцирующей схемы, показанной на рис. 5, сопряжена со значительными трудностями по следующим причинам:

во-первых, схема имеет чисто ёмкостное входное сопротивление, которое в случае, если источником входного сигнала является другой операционный усилитель, может вызвать его неустойчивость;

во-вторых, дифференцирование в области высоких частот, в соответствии с выражением (4), приводит к значительному усилению составляющих высоких частот, что ухудшает соотношение сигнал/шум;

в-третьих, в этой схеме в петле обратной связи ОУ оказывается включенным инерционное звено первого порядка, создающее в области высоких частот запаздывание по фазе до 90°:

    Оно суммируется с фазовым запаздыванием операционного усилителя, которое может составлять или даже превышать 90°, в результате чего схема становится неустойчивой.

    Устранить эти недостатки позволяет включение последовательно с конденсатором дополнительного резистора R1 (на рис. 5 показан пунктиром). Следует отметить, что введение такой коррекции практически не уменьшает диапазона рабочих частот схемы дифференцирования, т.к. на высоких частотах из-за снижения усиления в цепи обратной связи она все равно работает неудовлетворительно. Величину R1С (и, следовательно, ноль передаточной функции RС

– цепи) целесообразно выбирать так, чтобы на частоте f1 усиление петли обратной связи составляло 1 (см. рис. 6).



Схема дифференцирования


Поменяв местами резистор и конденсатор в схеме интегратора на рис. 2, получим дифференциатор (рис. 5). Применение первого закона Кирхгофа для инвертирующего входа ОУ в этом случае дает следующее соотношение:

C(dUвх/dt) + Uвых/R = 0,

    или

Uвых = – RC(dUвх/dt).



Схема интегрирования


Наиболее важное значение для аналоговой вычислительной техники имеет применение операционных усилителей для реализации операций интегрирования. Как правило, для этого используют инвертирующее включение ОУ (рис.2).



Схема инвертирующего интегратора


     По первому закону Кирхгофа с учетом свойств идеального ОУ следует для мгновенных значений: i1

= - ic. Поскольку i1 = u1/R1, а выходное напряжение схемы равно напряжению на конденсаторе:

    то выходное напряжение определяется выражением:

    Постоянный член uвых(0) определяет начальное условие интегрирования. С помощью схемы включения, показаной на рис.3, можно реализовать необходимые начальные условия. Когда ключ S1 замкнут, а S2 разомкнут, эта схема работает так же, как цепь, изображенная на рис.2. Если же ключ S1 разомкнуть, то зарядный ток при идеальном ОУ будет равен нулю, а выходное напряжение сохранит значение, соответствующее моменту выключения. Для задания начальных условий следует при разомкнутом ключе S1 замкнуть ключ S2. В этом режиме схема моделирует инерционное звено и после окончания переходного процесса, длительность которого определяется постоянной времени R3C, на выходе интегратора установится напряжение

Uвых = -(R3 / R2)U2. (1)



Схема суммирования


Для суммирования нескольких напряжений можно применить операционный усилитель в инвертирующем включении. Входные напряжения через добавочные резисторы подаются на инвертирующий вход усилителя (рис. 1). Поскольку эта точка является виртуальным нулем, то на основании 1-го закона Кирхгофа при нулевых входных токах идеального ОУ получим следующее соотношение для выходного напряжения схемы:



Амплитудно-частотная характеристика


     Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них приходится рассматривать только спад коэффициента усиления с возрастанием частоты.

 

      K(дб)

         100                            f1   

           80

           60

           40                                                    f1 ос

           20                                                                                        Рис.8

 

                                  102            104              106             f, Гц

 

На рис.8 показана типичная частотная характеристика операционного усилителя.

 

     Что вынуждает коэффициент усиления падать при возрастании частоты?

     Вернувшись к рис.2, можно видеть, что приведенная там схема не имеет никаких конденсаторов; однако, следует помнить, что любая схема, – будь то интегральная схема или схема на дискретных компонентах, – содержит металлические проводники, отделенные друг от друга изоляторами. Это означает, что сам монтаж схемы обладает некоторой распределенной паразитной емкостью. Напомним также, что некоторой емкостью обладает любой p-n – переход в полупроводнике. При возрастании частоты эти паразитные емкости закорачивают на землю все большую часть сигнала переменного тока и, в конце концов, весь сигнал уходит на землю через паразитную емкость и не достигнув нагрузки.

 

 

 

 

                                                                                                    Uвых

        Uд = Uвх                                 

 

                                                                                                         Rн

 

 


                                                                              Рис. 9

                                                            

     При вычислениях эти распределенные паразитные емкости можно объединить, как если бы они являлись одним конденсатором, и каждый каскад операционного усилителя представить в виде эквивалентной схемы, состоящей из источника напряжения, сопротивления и паразитной емкости, как показано на рис.9.

     При возрастании частоты реактивное сопротивление конденсатора падает, что приводит к уменьшению полного сопротивления комбинации из включенных параллельно Rн и С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе Uвых окажется меньше, чем АUд.

     Выражение для коэффициента усиления А на любой частоте

 

имеет вид
 , где А – коэффициент усиления без обратной связи на низких частотах; f – рабочая частота; f1 – граничная частота или частота при 3 дБ, т.е. частота, на которой А(f) на 3 дБ ниже А, или равен 0,707·А.

     Если, как это обычно бывает, Rн  » Rвых, то
.

     Обычно амплитудно-частотная характеристика дается в рационализированной форме:

 

.

 

    Отметим еще раз, что f есть переменная, которая представляет интересующую нас частоту, в то время как f1 – фиксированная частота, которая называется граничной

или сопрягающей частотой и является характеристикой конкретного усилителя. Можно видеть, что увеличение частоты приводит к падению коэффициента усиления по напряжению.

     Кроме того, из выражения для ? видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

     Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

 Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):



 

 
, где А(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи
, получим

 

.

 

Это выражение можно переписать в виде
, где f1oc = f1(1+А?); K1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f1oc – сопрягающая частота при наличии обратной связи.

     Сопрягающая частота при наличии обратной связи равна сопрягающей частоте без обратной связи, умноженной на (1+А?)>1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f1oc > f1 для усилителя с коэффициентом усиления равным 40 дБ.

     Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

Тогда получим произведение усиления на полосу пропускания:

, где А – коэффициент усиления без обратной связи на низких частотах.

     Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

 

 

3.     Экспериментальная часть

 

     Предлагаемый эксперимент позволит изучить основные свойства и параметры операционных усилителей, а также важнейшие типы усилительных схем, в которых они используются.

     Лабораторная работа проводится на стенде № 6. Его внешний вид представлен на рис.10.

 

   2                                                                                                        1

 



 

 

   3                                                                                                        15

 

   4

 

 

   5                                                                                                        14

 

 

                         6             7       8      9      10             11    12      13

 

Рис.10. Внешний вид  лабораторного стенда № 6.

1-    Силовой трансформатор блока питания.

2-    Двухполярный стабилизатор блока питания (Uп = ± 10В).

3-    Переключатель режимов измерения параметров операционного усилителя (Iсм1, Iсм2, Iпот).

4-    Плата устройств на операционных усилителях.

5-    Выводы для измерения токов смещения.

6-    Выводы для измерения напряжения сдвига.

7-    Вывод общего провода.

8-    Вывод Uвх1.

9-    Вывод Uн = 1000Uд.

10-           Вывод Uвых1.

11-           Вывод общего провода.

12-           Вывод Uвх2.

13-           Вывод Uвых2.

14-           Тумблер переключения усилителей: инвертирующий, неинвертирующий.

15-           Тумблер включения сетевого питания.

     Все устройства, размещенные на плате 4 (рис.10) лабораторного стенда, выполнены на микросхемах К140УД20. В одном корпусе интегральной микросхемы размещены два операционных усилителя. На базе одного корпуса микросхемы К140УД20 построены устройства для измерения токов смещения, напряжения сдвига, тока питания и коэффициента усиления без обратной связи, а на базе второго корпуса выполнены инвертирующий и неинвертирующий усилители.

 

Задание 1.


Измерение токов смещения, тока сдвига, тока потребления и напряжения сдвига.

 

     Для измерения тока сдвига собирается схема, приведенная на рис.11.

     Заметим, что при замкнутом положении переключателей П1, П2 и П3 схема напоминает повторитель с заземленным входом. Конденсаторы С1 и С2

используются для устранения частотной (динамической) неустойчивости или генерации.

В таком состоянии напряжение на выходе усилителя Uвых будет в точности соответствовать Uсдв. Замкнув перемычкой выводы (5) рис.10, измерить Uсдв универсальным вольтметром В7 – 35. Величину Uсдв занести в таблицу 1.

 

                                                               С1

 

                                                           R1

 

                   Iсм1  

                                                               П1

                                                              +Uп

 

                Iсм2                                         - Uп
                     Uвых         

                                                     П3

      П2      R2                С2    

 

 

Рис.11. Схема измерения Iсм1, Iсм2, Iсдв, Iпотр и Uсдв

 

     Заметим, что если переключатель П1

находится в разомкнутом положении, а переключатели П2 и П3

– в замкнутом, то на сопротивлении R1 появляется падение напряжения, вызванное током Iсм1. Так как схема является повторителем, то Uвых = Iсм1R1 если Uсдв « Uвых. Следовательно, Iсм1 = Uвых / R1. Если Uсдв нельзя пренебречь по сравнению с Uвых, то Iсм1=(Uвых –Uсдв) / R1.

     Аналогично измеряется и второй ток смещения:

Iсм2 = (Uвых  – Uсдв) / R2.

     Ток сдвига Iсдв вычисляется по формуле Iсдв = Iсм1 – Iсм2. Схема, представленная в лабораторном стенде, позволяет проводить измерения токов смещения как непосредственно подключив микроамперметр к выводам (5) и меняя режимы измерений переключателем (3), так и через измерение Uвых при введении в схему резисторов R1 и R2.

Измерив или рассчитав Iсм1, Iсм2, Iсдв любым из представленных способов, занести их значения в таблицу 1.



     Для измерения тока потребления Iпотр переключатель (3) перевести в положение Iпотр и, подключив микроамперметр к выводам (5) вместо перемычки, измерить Iпотр. Результат измерений занести в таблицу и сравнить с паспортными данными на операционный усилитель К140УД20.

Таблица 1

                               Uсдв                Iсм1                 Iсм2                           Iсдв                               Iпотр 

   Экспер.

   Компьют.

 

 

Задание 2. Измерение коэффициента усиления без обратной связи.

     Для выполнения этого задания в лабораторном стенде собрана схема, приведенная на рис.12.

 

                         50кОм      Uн       50кОм

 

                             1МОм

                                                                            +Uп

 

 

                              1кОм           Uд

      Uвх                                                                                              Uвых

                                                                            - Uп

 

 

 

 

Рис.12. Схема измерения коэффициента усиления операционного усилителя без обратной связи

 

Схема представляет собой инвертирующий усилитель с коэффициентом усиления равным 1. Для измерения коэффициента усиления без обратной связи необходимо измерить Uд и вычислить А = Uвых / Uд. Измерение Uд сопряжено с большими трудностями измерения очень малого по величине сигнала. Введение в усилитель делителя напряжения с резисторами 1МОм и 1кОм позволяет измерение Uд свести к измерению Uн = 1000Uд, что вполне возможно при использовании обычных измерительных приборов, например вольтметра В7 – 35.

     Подать на вход Uвх1 сигнал напряжением 5В с частотой 10Гц. Вольтметром В7 – 35 измерить Uвых1 и Uн = 1000Uд. Рассчитать коэффициент усиления операционного усилителя без обратной связи
 и записать его усредненное значение в таблицу 2.

 

Таблица 2.

                            Uвх         f , Гц          Uвых           Uн=1000Uд             Uд             А



    Экспер.          5 В           10

   Компьют.        7В            10

 

 

Задание 3. Снятие амплитудной характеристики инвертирую –

                   щего и неинвертирующего усилителей.

     На плате 4 лабораторного стенда собраны две схемы усилителей на базе микросхемы К140УД20. Схемы усилителей представлены на рис.13. 

            

                                       Rос                                                +Uп

         R1                   +Uп

                                                                 Uвх                       -Uп          Uвых

Uвх                           - Uп         Uвых  

                                                                         R1             Rос          

                      R1¦Rос

 

                                а)                                                    б)

 

Рис.13. Схемы инвертирующего и неинвертирующего усилителей.

Для получения амплитудных характеристик усилителей подать на их вход гармонический сигнал частотой 1кГц. Изменяя его от 0 до Uвх, которое даст симметричное ограничение выходного сигнала, замерить величину Uвых для обеих схем включения операционного усилителя. Переключение схем производить тумблером 13 (рис.10). Результаты свести в таблицу 3.

Таблица 3

  №                инвертирующий ус-ль                            неинвертирующий ус-ль

  п/п        f           Uвх      Uвых        Kоос          D            Uвх           Uвых        Kоос        D

   1.

  …      1кГц

  … 

 

      Представить графически зависимости Uвых = f (Uвх) для обеих схем включения.

     По результатам измерений рассчитать Kоос – коэффициент усиления с отрицательной обратной связью и D – динамический диапазон усилителей.

 

Задание 4.  Исследование частотных характеристик

                    инвертирующего и неинвертирующего усилителей.

     Для получения амплитудно-частотной и фазово-частотной характеристик обеих схем включения операционных усилителей подать на их вход постоянный по амплитуде гармонический сигнал и, изменяя частоту сигнала, измерить Uвых и ??.


Отношение Uвых/ Uвх дает коэффициент усиления Kоос. Результаты измерений занести в таблицу 4.

 

Таблица 4

    №              инвертирующий ус-ль                       неинвертирующий ус-ль

  п/п      Uвх      f       Uвых      ??       Kоос      f1        Uвх         f        Uвых     ??     Kоос       f1

   1.

  …

  …

 

 

Обычно зависимость коэффициента усиления по напряжению от частоты дается в рационализированной форме:



f – есть переменная, которая представляет интересующую нас частоту, в то время как f1 – фиксированная частота, которая называется граничной или сопрягающей частотой и является характеристикой конкретного усилителя. Сопрягающая частота f1 определяется как частота, на которой коэффициент усиления падает до 0,707 от коэффициента усиления на низких частотах или, что тоже, становится ниже K на 3дБ.

     При построении графиков частотных характеристик используется логарифмический масштаб. Коэффициент усиления по напряжению в децибеллах: Kоос(дБ) = 20 lgKоос. Применяя эти понятия, представить экспериментальные результаты в графическом виде в логарифмическом масштабе в рационализированной форме Kоос(дБ) = ?(lgf), ?? = ?(lgf). Используя постоянство произведения коэффициента усиления на полосу пропускания K

? f1ос = const, вычислить частоту единичного усиления и сравнить ее со справочными данными на микросхему К140УД20.

 

 

Задание 5.  Измерение скорости нарастания  и максимальной

                    амплитуды выходного сигнала.

     Эти измерения можно проводить по переходной характеристике, т.е. по сигналу на выходе операционного усилителя при подаче на его вход ступеньки максимально возможного напряжения.

     Скорость нарастания выражают в вольтах в микросекунду:

.

     Измерив скорость нарастания выходного сигнала, можно вычислить максимальную амплитуду неискаженного гармонического сигнала на выходе усилителя на частоте f. Для этого следует воспользоваться соотношением:

,  (f  = 20кГц).

 

Задание 6.


Компьютерное моделирование лабораторного

                   эксперимента.


1. Используя программное обеспечение, предлагаемое преподавателем (Electronics Workbench 3.0E  или CircutMaker  v.5.0), построить на экране компьютера исследуемые схемы на операционных усилителях. В качестве операционного усилителя использовать K140UD20.

2. Для схемы рис.11 вместо резисторов R1 и R2 включить микроамперметры для измерения токов смещения и тока сдвига. К выходу схемы подключить вольтметр для измерения напряжения сдвига.

     Включив питание схемы, снять показания Iсм1, Iсм2 и Uсдв. Результаты измерений записать в таблицу 1 для анализа и сравнения с экспериментом.

3. На вход схемы, построенной по рис.12, подать от функционального генератора гармонический сигнал с амплитудой 7 В и частотой 10 Гц. К выходу схемы подключить вольтметр и осциллограф для измерения и контроля выходного сигнала. К точке Uн подключить вольтметр переменного тока. Включив питание схемы, измерить Uн  и Uвых. Вычислить коэффициент усиления операционного усилителя без обратной связи А = Uвых?1000 / Uн.

Результаты измерений записать в таблицу 2 для анализа и сравнения с экспериментом.

4. На вход схемы, построенной по рис.13а подать от функционального генератора гармонический сигнал с амплитудой 100 mV и частотой 1 кГц. Двухлучевой осциллограф и измеритель частотных характеристик по одному из каналов подключить к входу инвертирующего усилителя, а по второму каналу к его выходу. Органами управления осциллографа и измерителя частотных характеристик установить наиболее рациональную форму и масштаб осциллограмм. По ним измерить коэффициент усиления при f = 1 кГц, частоту среза и полосу пропускания.

Произвести анализ и установить влияние параметров элементов схемы на характеристики усилителя.

     Аналогичные исследования провести для неинвертирующего усилителя.

5. На вход неинвертирующего усилителя (ри.13,б) подать сигнал прямоугольной формы (меандр). На экране осциллографа наблюдать переходные процессы, т.е.


отклик системы на импульсное воздействие. По фронту выходного сигнала измерить его скорость нарастания, выразив результат в В/мкс.

     Результаты компьютерного анализа схем на операционных усилителях сравнить с экспериментальными данными и сделать соответствующие выводы. 

 

 

Контрольные вопросы:

1.     Назовите характеристики идеального усилителя.

2.     Назовите причину возникновения Iсдв и Uсдв.

3.     Повторитель напряжения является хорошим буферным каскадом. Объясните, почему?

4.     Кратко изложите принцип действия схемы для измерения коэффициента усиления без обратной связи.

5.     Дайте определение КООС.

6.     Укажите две причины, приводящие к появлению частотной зависимости коэффициента усиления операционного усилителя.

7.     Указажите условия, выполнение которых приводит к самовозбуждению операционного усилителя.

8.     Перечислите способы частотной коррекции и  компенсации операционных усилителей.

9.     Начертите по памяти следующие схемы с операционными усилителями:

а) повторитель напряжения;

б) неинвертирующий усилитель;

в) инвертирующий усилитель;

г) усилитель с дифференциальным входом.

 

 

 

 

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

 

1.     Забродин Ю.С. Промышленная электроника. М.: Высш.шк., 1982. 496 с.; ил.

2.     Машинные методы анализа и проектирования электронных схем / Пер. с англ. И. Влах, К. Сингхал. М.: Радио и связь, 1988. 560 с.; ил.

3.     Основы    радиоэлектроники:    Учебное    пособие  / Ю. И.  Волощенко,  Ю. Ю.  Мартюшев  и  др. / Под  ред. Г.Д. Петрухина. М.: Изд-во МАИ, 1993. 416 с.; ил.

4.     Фолькенбери Л. Применение операционных усилителей и линейных ИС / Пер. с англ. М.: Мир, 1985. 572 с.; ил.

5.     Элементы  информационных  систем:   Учеб.  для   вузов  / В.П.Миловзоров. М.: Высш.шк., 1989. 440 с.; ил.

 

 

 

                                                             

 

 

 

 

 

 

 

 


Инвертирующий усилитель


 

                                                                               

                                      R1          А           Rос

                    Uвх                         Uд

                                                                                             Uвых

                                                                                                         Рис. 6

     Как следует из самого названия, входной и выходной сигналы инвертирующего усилителя сдвинуты по фазе на 180º. Если на схему подать положительное Uвх, то Uд станет положительным и выходной потенциал начнет снижаться до тех пор пока напряжение на инвертирующем входе (точка А на рис.6) не станет почти нулевым: Uд = Uвых / А ? 0.

     Таким образом, R1 и Rос действует как делитель напряжения между Uвых и Uвх, и отношение Uвых / Uвх равно таковому для Rос/R1. Точку А часто называют потенциальной землей, потому, что ее потенциал почти равен потенциалу земли, так как Uд, как правило, весьма мало.

     Чтобы получить выражение для коэффициента усиления с обратной связью, еще раз напомним, что

, а Rвх усилителя весьма велико. Поскольку 
  и
, можно написать, что:

.

Знак минус перед правой частью этого равенства означает, что выход инвертирован. Полагая Uд = 0 (так как А > ?), получим

. Коэффициент усиления с обратной связью рассматриваемой схемы равен
.

     Входное сопротивление схемы инвертирующего усилителя равно R1, в силу того, что, благодаря обратной связи, в точке А на рис.6 сохраняется приблизительно нулевой потенциал. Сопротивление R1 должно быть выбрано так, чтобы не нагружать источник входного сигнала, и, естественно, Rос должно быть достаточно большим, чтобы чрезмерно не нагружать операционный усилитель.



Неинвертирующий усилитель


     Схема на рис.5 позволяет использовать операционный усилитель в качестве неинвертирующего усилителя с высоким полным входным сопротивлением, причем коэффициент усиления всей схемы по напряжению может быть жестко задан с помощью сопротивлений R1 и Rос.

                  Uвх               Uд     

                                                                              Uвых

                                        R1         Rос

                                                                                         Рис. 5

Чтобы получить выражение для коэффициента усиления нашей схемы,   напомним,    что   

,   так как  Rвх > ?.  Имеем

  и 
.

     Напряжение на инвертирующем входе усилителя равно

, поэтому

.

     Следовательно,  

.

Поскольку  Uвых = Uд · А  и  Uд=Uвых / А, то если, как мы предположили, А > ? и Uд ? 0, можно написать

. Откуда найдем коэффициент усиления схемы Uвых / Uвх, который обычно называют коэффициентом усиления с замкнутой обратной связью Kос. Решая уравнение
, получим
.

      Таким образом, значение сопротивления Rос и R1 определяют коэффициент усиления схемы по напряжению.  Формула 

  верна в случае,  когда А » Kос.



ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ


Цель работы: Изучение принципа работы и  измерение  основных параметров и характеристик операционных усилителей. Компьютерное моделирование базовых функциональных устройств на основе операционных усилителей.

 

 

1.     Дифференциальный каскад как базовый элемент аналоговых интегральных микросхем

 

     Наиболее распространенной схемой, на базе которой создаются усилители постоянного тока, операционные усилители, цифровые микросхемы эмиттерно-связанной логики, является дифференциальный каскад.

     Дифференциальный усилительный каскад (рис.1) выполняют по принципу сбалансированного моста, два плеча которого образованы резисторами Rк1 и Rк2, а два других – транзисторами Т1 и Т2. Выходное напряжение снимается между коллекторами транзисторов (т.е. с диагонали моста).

     На транзисторе Т3 собрана схема источника стабильного тока Iэ, определяющего сумму эмиттерных токов Iэ1 и Iэ2 транзисторов Т1

и Т2. Для определения тока Iэ необходимо знание напряжения между точками схемы 1 и 2.

Iэ=(U1-2 – 0,6) / R3 = (I1R2 – 0,6) / R3.

     Питание каскада производится от источников +Ек1 и – Ек2 с равными напряжениями относительно общей точки (земли).

     С помощью напряжения Ек2

снижают потенциал эмиттеров транзисторов Т1 и Т2

относительно общей точки схемы. Это позволяет подавать сигналы на входы усилителя без введения дополнительных смещений.

     Схема дифференциального каскада требует применения близких по параметрам транзисторов Т1, Т2 и равенства сопротивлений Rк1, Rк2.

     Благодаря этому, при входных сигналах, равных нулю, достигается баланс моста, напряжения на коллекторах обоих транзисторов равны и выходное напряжение, снимаемое с диагонали, Uвых = Uвых 1 – Uвых 2 = 0. Идентичность параметров транзисторов Т1 и Т2 легко достигается при интегральном исполнении, когда их изготовление осуществляется в едином технологическом процессе на общем кристалле полупроводника.


                                                                                                + Ек1

                                     Rк1        Iк1        Iк2           Rк2     

                 Uвых 1                              Uвых                                 Uвых 2 

                                               Т1              Т2

                Uвх 1                           Iэ1        Iэ2                               Uвх 2

                                                   Iэ                             

                                                                        1    R1   

                                                                                                 +

                                                     R3        R2                      

                                                                               I1

      Рис.1                                                                                  - Eк2   

                                                                         2

     Если Uвх1 и Uвх2 замкнуты на общую точку схемы (землю), то Uвх = 0. Ток Iэ делится поровну между двумя транзисторами Iэ1= Iэ2= Iэ/2. Значение эмиттерных токов определяются входными токами смещения

(базовыми токами покоя):

.

Равенству эмиттерных токов транзисторов будет соответствовать равенство  их  коллекторных  токов   Iк1 = Iк2 = ?Iэ / 2 ? Iэ / 2 
  и напряжений на коллекторах: Uк1 = Uк2 = Eк1 – IэRк / 2, где Rк= Rк1 = Rк2. Данное состояние схемы характеризует режим баланса каскада

или режим покоя.

Uвх1 = Uвх2 = 0,  Uвых = Uк1 – Uк2 = 0.

     Пусть Uвх1 ? 0, при Uвх2 = 0. Предположим, что напряжение входного сигнала Uвх1 имеет положительную полярность.

     Под воздействием входного сигнала через входные цепи обоих транзисторов будет протекать входной ток Iвх, увеличивающий ток базы транзистора Т1 и уменьшающий ток базы транзистора Т2.


При этом токи Iэ1 и Iк1 увеличиваются, а токи Iэ2 и Iк2 уменьшаются. Изменение токов обоих транзисторов происходит на одну и ту же величину, поскольку сумма токов Iэ1+Iэ2 = Iэ остается неизменной.

     Изменения коллекторных токов вызывают изменение потенциальной диаграммы каскада. Напряжение Uк1 = Ек1

– Iк1Rк1 уменьшается, что вызывает приращение напряжения -?Uк1, противоположное по знаку напряжению входному Uвх1.

     Напряжение Uк2 = Ек1 – Iк2Rк2 возрастает, что создает соответственно приращение напряжения +?Uк2  того же знака, что и напряжение входного сигнала.

     Таким образом, для рассматриваемого способа подачи входного сигнала выход каскада со стороны коллектора транзистора Т1 (Uвых1) является инвертирующим, а со стороны коллектора транзистора Т2

(Uвых2) – неинвертирующим. Сигнал, снимаемый с обоих коллекторов, называется дифференциальным:

.

     Изменения выходных напряжений схемы под воздействием сигнала на входе прекращаются, когда под влиянием входного тока ток базы одного из транзисторов становится равным нулю, а ток Iэ протекает только через один из транзисторов (Т1). Тогда:

Uвых 1 = Ек 1

- Iэ·Rк

Uвых 2 = Ек 1

Uвых = Uвых 2 – Uвых 1 ? Iэ·Rк

     Подобно описанным, но с иными знаками приращений, протекают процессы в схеме при изменении полярности входного сигнала или при подключении его к другому входу.

     Определим коэффициенты усиления по напряжению дифференциального каскада.

     Входной ток каскада:

,

где Rвых – выходное сопротивление источника сигнала Uвх.

     Входной ток создает приращение коллекторных токов ± ?Iк = ± ?Iвх и напряжений на коллекторах: ± ?Uвых1.2 = ± ?IкRк = ± ?IвхRк.

Коэффициент усиления по напряжению каскада (по обоим выходам Uвых1, Uвых2): 

.

Коэффициент усиления по дифференциальному выходу (Uвых):

.

     Весьма важным параметром дифференциального каскада является крутизна его передаточной характеристики S, т.е. величина, количественно характеризующая степень влияния Uвх на коллекторный ток транзисторов Т1 и Т2.



.

Так как Iк1 + Iк2 = ?Iэ = const, то dIк1 = - dIк2. Следовательно,
. Максимальное значение крутизны передаточной характеристики получается       при  Uвх=0   
.

     С учетом этого усилительные свойства дифференциального каскада можно записать в более компактном виде с учетом комбинаций подачи входного напряжения и снятия выходного.

1.     Симметричный вход – несимметричный выход.

     Для первого выхода 
 

     Для второго выхода 
,       или
, где S1(S2) – крутизна передаточной характеристики в рабочей точке.

2.     Симметричный вход – симметричный выход.

.

2.     Основные сведения об операционных усилителях

 

     Операционный усилитель – это модульный многокаскадный усилитель с дифференциальным входом, по своим характеристикам приближается к воображаемому “идеальному усилителю”. С таким идеальным усилителем обычно ассоциируются следующие свойства:

1)    бесконечный коэффициент усиления по напряжению (А> ?);

2)    бесконечное полное входное сопротивление (Zвх > ?);

3)    нулевое полное выходное сопротивление (Zвых >  0);

4)    равенство нулю выходного напряжения (Uвых = 0) при равных напряжениях на входах (U1 = U2);

5)    бесконечная ширина полосы пропускания (?fпр= ?).

     На практике ни одно из этих свойств не может быть осуществлено полностью, однако к ним можно приблизиться с достаточной для многих приложений точностью. Например, если коэффициент усиления схемы ограничивается при помощи обратной связи значением 10, то коэффициент усиления собственно усилителя (без обратной связи), равный 100000, с практической точки зрения достаточно близок к бесконечности.

     Первый каскад операционного усилителя – это дифференциальный усилитель. Дифференциальный усилитель имеет высокий коэффициент усиления по отношению к разности входных сигналов U2 – U1 и низкий коэффициент усиления по отношению к одинаковым сигналам, поданным на входы одновременно (синфазные сигналы).Входной каскад операционного усилителя является наиболее ответственным, поскольку именно им определяется величина Zвх и в нем минимизируется чувствительность к синфазным сигналам и  напряжение сдвига.


Основные параметры операционных усилителей


1.     Коэффициент усиления без обратной связи (А).

2.     Выходное напряжение сдвига (Uсдв). Небольшое нежелательное напряжение, возникающее внутри усилителя при нулевом напряжении на обоих входах. Является следствием неточного согласования напряжений эмиттер–база входных транзисторов. Обычно Uсдв равно нескольким милливольтам.

3.     Входной ток смещения (Iсм). Ток на входах усилителя, необходимый для работы входного каскада операционного усилителя.

4.     Входной ток сдвига (Iсдв). Разность токов смещения появляется вследствие неточного согласования входных транзисторов.

.

5.     Входное сопротивление Rвх. Сопротивление усилителя по отношению к входному сигналу. Как правило, Rвх превышает единиц мегаом.

6.     Выходное сопротивление Rвых. Внутреннее сопротивление усилителя по отношению к нагрузке. Обычно Rвых не превосходит нескольких сотен Ом.

7.     Коэффициент ослабления синфазного сигнала. Характеризует способность ослаблять сигналы, приложенные к обоим входам одновременно.

8.     Ток потребления. Ток покоя (без нагрузки), потребляемый операционным усилителем.

9.     Потребляемая мощность. Мощность (без нагрузки), рассеиваемая операционным усилителем.

10.            Максимальная скорость нарастания выходного напряжения (V). Измеряется в вольтах в микросекунду.

11.            Напряжение питания.

12.            Переходная характеристика. Сигнал на выходе усилителя при подаче на его вход ступеньки напряжения.



Повторитель напряжения


     В схеме на рис.4 Uвых подается непосредственно на инвертирующий вход. Напряжение между входами Uд – это то напряжение, которое усиливается с коэффициентом усиления А. Напряжение на выходе усилителя Uвых = Uд · А.

                     Uд

                                                                                   Uвых

                          Uвх

                                                                                                 Рис.4

Из закона Кирхгофа имеем Uвх + Uд = Uвых. Поскольку Uвых=Uд·А, получим, что Uд=Uвых/А. Следовательно,

. Если А – приближается к бесконечности, то Uвых/А стремится к нулю, и в результате получаем равенство Uвх=Uвых.

     Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим буферным каскадом.



Упрощенная схема операционного усилителя


За входным каскадом, как показано на рис.2, следуют один или несколько промежуточных; они обеспечивают уменьшение напряжения сдвига на выходе усилителя до близкой к нулю величины и усиление по напряжению и по току.

     Комплементарный выходной каскад должен обеспечивать низкое полное выходное сопротивление операционного усилителя и ток, достаточный для питания ожидаемых нагрузок. В качестве выходного каскада обычно используется простой или комплементарный эмиттерный повторитель.

     Для снижения чувствительности схемы к синфазным сигналам и увеличения входного сопротивления ток эмиттера первого дифференциального каскада задается с помощью источника стабильного тока.

     На рис.3 для примера показано условное обозначение и цоколевка операционного усилителя  К544УД2.

                                                     +U

                                         1

           Инверт.         2               7

           вход                       -

                                                               6           выход

          Неинв.            3                            

          Вход                                        8

                                                   4

                                        5

                                                    - U                                     Рис. 3

      7, 4 -  выводы  питания  операционного усилителя;

      1 – 8 - выводы частотной коррекции. Эти выводы используются

      для предотвращения генерации операционного усилителя, если

      последний не имеет внутренней коррекции; 

      6 - выход. Вывод, с которого снимается усиленное напряжение;

      2 – инвертирующий вход. Если неинвертирующий вход

      заземлен и сигнал подан на инвертирующий вход, то сигнал

      выхода окажется сдвинутым по фазе на 180? относительно

      сигнала на входе;

     3 – Неинвертирующий вход. Если инвертирующий вход

      заземлен, а сигнал подан на неинвертирующий вход, то

      выходной сигнал окажется синфазным с сигналом на входе.



Усилитель с дифференциальным входом


     Перед тем как начать рассматривать схему этого усилителя (рис.7), напомним, что разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ), так как очень мало отношение Uвых / А. Поэтому в данном разделе мы будем считать, что инвертирующий и неинвертирующие входы находятся под одинаковым напряжением, равным Uос.

                                  R1                         Rос 

 

                 U1

                                           Uд=0 

                 U2                                                                      Uвых

                                    R2                    R?ос

                                            Uoc

                                                                                                       Рис. 7

     Заметим, что если U2 на рис.7 равно нулю, то усилитель будет действовать по отношению к U1 как инвертирующий усилитель.

     Теперь, если задать U1 равным нулю и подать входной сигнал по входу U2, то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R2 и R?ос. Если оба напряжения U1 и U2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R1 и Rос станет равным Uос, где

.

     Вследствие того, что усилитель имеет очень высокое входное сопротивление,

имеем

.

Приравняв второй и четвертый члены и, решая полученное уравнение относительно Uвых, имеем:

.

Подставляя выражение для Uос, получим:

.

Если положить R1 = R2 и Roc = R´oc (ситуация, которая наиболее часто встречается), получим

. Полярность выходного напряжения определяется большим из напряжений U1 и U2.



Важнейшие правила


     Операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на доли милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому:

1. Выход операционного усилителя стремится к такому состоянию, чтобы разность напряжений между его входами была равна нулю.

     Операционный усилитель потребляет очень небольшой входной ток менее десятков наноампер. Поэтому можно сформулировать второе правило:

2.     Входы операционного усилителя ток не потребляют.

     Эти правила создают достаточную основу для рассмотрения и расчета схем на операционных усилителях.